生物技术通报 ›› 2022, Vol. 38 ›› Issue (3): 69-78.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0521
收稿日期:
2021-04-19
出版日期:
2022-03-26
发布日期:
2022-04-06
作者简介:
张鸿雁,女,博士,教授,研究方向:植物病害生物防治;E-mail: 基金资助:
ZHANG Hong-yan(), LIN Guo-li, LI Ru-lian, JI Xiao-qi
Received:
2021-04-19
Published:
2022-03-26
Online:
2022-04-06
摘要:
从储藏期间番茄果实中分离到1株果腐病病原菌,为明确其分类地位,寻找合适的生防菌菌株,对其进行形态鉴定和系统发育分析,同时进行了拮抗链霉菌的筛选、鉴定和防腐保鲜作用研究。结果表明,导致番茄采后果腐病的病原菌Qyg16-2为葡萄座腔菌(Botryosphaeria dothidea);从番茄健康植株根际土壤筛选获得对Qyg16-2有良好拮抗作用的放线菌X13,经形态学、生理生化特征及16S rDNA序列鉴定为桑氏链霉菌(Streptomyces sampsonii)。X13能抑制病原菌孢子萌发和菌丝生长,显著提高番茄抗性酶多酚氧化酶(PPO)、过氧化物酶(POD)和苯丙氨酸解氨酶(PAL)活性,降低储藏番茄的腐烂指数,延缓果实硬度、可溶性固形物、可滴定酸及VC的降低。桑氏链霉菌(S. sampsonii)X13对病原菌葡萄座腔菌(B. dothidea)抑菌效果显著,对储藏番茄具有良好的防腐保鲜作用。
张鸿雁, 林国莉, 李如莲, 纪晓琦. 番茄果腐病拮抗菌的筛选及对番茄的防腐保鲜作用[J]. 生物技术通报, 2022, 38(3): 69-78.
ZHANG Hong-yan, LIN Guo-li, LI Ru-lian, JI Xiao-qi. Screening of Antagonist Against Tomato Fruit Rot and Their Preservation Qualities on Tomato[J]. Biotechnology Bulletin, 2022, 38(3): 69-78.
图1 番茄果腐病病原菌形态特征及致病性 A:病原菌菌落;B-C:病原菌显微特征;D:感病果
Fig. 1 Morphological characteristics of the pathogens and pathogenicity A:colony;B-C:microscopic characters;D:infected fruit
菌株编号 Strain No. | D/mm | T | 抑菌率 Inhibition rate/% | 孢子萌发抑制率 Inhibition of seed germination/% | 菌株编号 Strain No. | D/mm | T | 抑菌率 Inhibition rate/% | 孢子萌发抑制率Inhibition of germination/% | |
---|---|---|---|---|---|---|---|---|---|---|
X1 | 20.31±2.12a | +++ | 68.15±1.25b | 73.89±4.01b | X54 | 10.67±0.34d | ++ | - | - | |
X13 | 26.53±1.03a | +++ | 82.53±0.93a | 98.37±3.54a | X60 | 11.22±0.51d | +++ | - | - | |
X19 | 18.11±2.00b | +++ | 61.25±1.20b | 62.12±5.13c | X75 | 14.64±0.39d | +++ | - | - | |
X20 | 13.45±1.09c | ++ | - | - | X85 | 18.92±1.11ab | +++ | 49.21±0.35c | 39.12±3.25e | |
X43 | 19.06±1.32b | +++ | 59.00±0.65b | 46.98±4.20e | X90 | 19.46±1.20ab | +++ | 47.35±1.04c | 54.99±2.84cd | |
CK | - | - | - | 0.81±0.15f |
表1 放线菌对供试病原菌生长的抑制作用
Table 1 Inhibitory effect of actinomycetes on the test pathogen
菌株编号 Strain No. | D/mm | T | 抑菌率 Inhibition rate/% | 孢子萌发抑制率 Inhibition of seed germination/% | 菌株编号 Strain No. | D/mm | T | 抑菌率 Inhibition rate/% | 孢子萌发抑制率Inhibition of germination/% | |
---|---|---|---|---|---|---|---|---|---|---|
X1 | 20.31±2.12a | +++ | 68.15±1.25b | 73.89±4.01b | X54 | 10.67±0.34d | ++ | - | - | |
X13 | 26.53±1.03a | +++ | 82.53±0.93a | 98.37±3.54a | X60 | 11.22±0.51d | +++ | - | - | |
X19 | 18.11±2.00b | +++ | 61.25±1.20b | 62.12±5.13c | X75 | 14.64±0.39d | +++ | - | - | |
X20 | 13.45±1.09c | ++ | - | - | X85 | 18.92±1.11ab | +++ | 49.21±0.35c | 39.12±3.25e | |
X43 | 19.06±1.32b | +++ | 59.00±0.65b | 46.98±4.20e | X90 | 19.46±1.20ab | +++ | 47.35±1.04c | 54.99±2.84cd | |
CK | - | - | - | 0.81±0.15f |
图3 拮抗菌X13对病原菌的拮抗作用及其形态特征 A:抑制;B:菌落形态;C:显微形态(10×40)
Fig. 3 Inhibition effect of antagonistic Streptomyce strain X13 to pathogen and their morphological characters A:Inhibition. B. Colony morphology. C:Micromorphology(10×40)
测定内容Measured item | 结果Result | 碳源利用Carbon utilization | 结果Result |
---|---|---|---|
明胶液化Gelatin liquefaction | + | D-蔗糖D-sucrose | + |
牛奶胨化Milk coagulation | + | L-鼠李糖L-rhamnose | - |
硝酸盐还原Nitrate reduction | + | 肌醇Inositol | - |
黑色素产生Black pigment | - | D-葡萄糖D-glucose | + |
酪氨酸酶Tyrosinase | - | D-木糖D-xylose | + |
H2S | - | D-果糖D-fructose | + |
表2 菌株X13的生理生化特征及碳源利用
Table 2 Physicochemical characteristics and carbon source utilization of X13
测定内容Measured item | 结果Result | 碳源利用Carbon utilization | 结果Result |
---|---|---|---|
明胶液化Gelatin liquefaction | + | D-蔗糖D-sucrose | + |
牛奶胨化Milk coagulation | + | L-鼠李糖L-rhamnose | - |
硝酸盐还原Nitrate reduction | + | 肌醇Inositol | - |
黑色素产生Black pigment | - | D-葡萄糖D-glucose | + |
酪氨酸酶Tyrosinase | - | D-木糖D-xylose | + |
H2S | - | D-果糖D-fructose | + |
处理 Treatment | 储藏时间Storage time/d | ||||||
---|---|---|---|---|---|---|---|
0 | 4 | 8 | 12 | 16 | 20 | ||
对照CK | 0 | 0 | 9.81±1.05aD | 25.26±3.15aC | 48.03±1.21aB | 68.32±1.20aA | |
5% | 0 | 0 | 4.98±1.35bC | 18.35±1.41bB | 25.10±1.27cA | 26.11±1.02bA | |
10% | 0 | 0 | 4.36±1.04bC | 14.26±1.50bB | 22.14±1.00bA | 23.32±1.84cA | |
20% | 0 | 0 | 2.05±0.68cC | 10.35±1.36cB | 20.16±1.35dA | 22.02±0.65cA |
表3 X13无菌发酵滤液对番茄腐烂指数的影响
Table 3 Effects of cell-free fermentation filtrate of X13 on the decay index of tomato %
处理 Treatment | 储藏时间Storage time/d | ||||||
---|---|---|---|---|---|---|---|
0 | 4 | 8 | 12 | 16 | 20 | ||
对照CK | 0 | 0 | 9.81±1.05aD | 25.26±3.15aC | 48.03±1.21aB | 68.32±1.20aA | |
5% | 0 | 0 | 4.98±1.35bC | 18.35±1.41bB | 25.10±1.27cA | 26.11±1.02bA | |
10% | 0 | 0 | 4.36±1.04bC | 14.26±1.50bB | 22.14±1.00bA | 23.32±1.84cA | |
20% | 0 | 0 | 2.05±0.68cC | 10.35±1.36cB | 20.16±1.35dA | 22.02±0.65cA |
储藏时间 Storage time/d | PPO/U·(g·FW-1) | POD/U·(g·FW-1) | PAL/U·(g·FW-1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CK | X13 | Δ/% | Ck | X13 | Δ/% | Ck | X13 | Δ/% | ||||
0 | 0.48±0.10a | 0.48±0.054a | 0.0 | 1.65±0.22a | 1.65±0.15a | 0.0 | 0.65±0.15a | 0.65±0.14a | 0.0 | |||
4 | 0.56±0.11b | 1.05±0.12a | 87.5 | 1.56±0.16a | 1.84±0.21a | 17.9 | 0.45±0.12a | 0.87±0.21a | 93.3 | |||
8 | 0.76±0.06b | 1.37±0.14a | 80.3 | 1.59±0.25b | 2.50±0.20a | 57.2 | 0.51±0.13b | 1.18±0.52a | 131.4 | |||
12 | 0.89±0.13b | 1.86±0.23a | 109.0 | 1.63±0.32b | 3.71±0.31a | 127.6 | 0.58±0.10b | 1.43±0.41a | 146.6 | |||
16 | 0.64±0.083b | 1.34±0.20a | 109.4 | 1.82±0.26b | 2.21±0.25a | 21.4 | 0.46±0.10b | 1.28±0.21a | 178.3 | |||
20 | 0.51±0.071b | 1.01±0.11a | 98.0 | 0.91±0.12a | 1.05±0.13a | 15.4 | 0.36±0.15b | 1.14±0.32a | 216.7 |
表4 X13无菌发酵滤液对番茄抗性酶活性影响
Table 4 Effects of cell-free fermentation filtrate of X13 on the defense enzyme activity of tomato
储藏时间 Storage time/d | PPO/U·(g·FW-1) | POD/U·(g·FW-1) | PAL/U·(g·FW-1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CK | X13 | Δ/% | Ck | X13 | Δ/% | Ck | X13 | Δ/% | ||||
0 | 0.48±0.10a | 0.48±0.054a | 0.0 | 1.65±0.22a | 1.65±0.15a | 0.0 | 0.65±0.15a | 0.65±0.14a | 0.0 | |||
4 | 0.56±0.11b | 1.05±0.12a | 87.5 | 1.56±0.16a | 1.84±0.21a | 17.9 | 0.45±0.12a | 0.87±0.21a | 93.3 | |||
8 | 0.76±0.06b | 1.37±0.14a | 80.3 | 1.59±0.25b | 2.50±0.20a | 57.2 | 0.51±0.13b | 1.18±0.52a | 131.4 | |||
12 | 0.89±0.13b | 1.86±0.23a | 109.0 | 1.63±0.32b | 3.71±0.31a | 127.6 | 0.58±0.10b | 1.43±0.41a | 146.6 | |||
16 | 0.64±0.083b | 1.34±0.20a | 109.4 | 1.82±0.26b | 2.21±0.25a | 21.4 | 0.46±0.10b | 1.28±0.21a | 178.3 | |||
20 | 0.51±0.071b | 1.01±0.11a | 98.0 | 0.91±0.12a | 1.05±0.13a | 15.4 | 0.36±0.15b | 1.14±0.32a | 216.7 |
储藏时间 Storage time/d | 硬度Firmness/(kg·cm-2) | 可溶性固形物Soluble solid content/% | 可滴定酸含量Titration acid content /% | Vc/(mg·100 g-1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ck | X13 | Δ/% | Ck | X13 | Δ/% | Ck | X13 | Δ/% | Ck | X13 | Δ/% | ||||
0 | 22.10±2.31a | 22.10±1.35a | 0.0 | 7.30±1.02a | 7.30±0.55a | 0.0 | 0.62±0.11a | 0.62±0.11a | 0.0 | 47.22±2.36a | 47.22±3.14a | 0.0 | |||
4 | 18.52±3.02b | 20.45±2.04a | 10.4 | 7.21±1.20a | 7.25±1.01a | 0.6 | 0.54±0.08a | 0.58±0.12a | 7.4 | 45.11±3.54a | 45.27±3.02a | 0.4 | |||
8 | 17.35±4.02a | 18.32±1.65a | 5.6 | 7.16±1.34a | 7.22±1.20a | 0.8 | 0.41±0.05a | 0.48±0.12a | 17.1 | 40.12±2.14a | 42.57±4.01a | 6.1 | |||
12 | 16.23±2.01a | 18.24±1.56a | 12.4 | 7.00±0.85a | 7.11±0.55a | 1.6 | 0.37±0.09a | 0.44±0.11a | 18.9 | 36.12±2.65b | 40.28±3.25a | 11.5 | |||
16 | 15.36±1.02a | 17.33±1.33a | 12.8 | 6.80±0.97a | 7.07±0.68a | 4.0 | 0.28±0.05a | 0.35±0.12a | 25.0 | 32.02±3.01b | 38.21±3.01a | 19.3 | |||
20 | 13.11±1.21b | 15.08±0.58a | 15.0 | 6.32±0.59a | 6.52±0.51a | 3.2 | 0.25±0.06a | 0.30±0.09a | 20.0 | 30.36±3.20b | 36.45±3.41a | 20.1 |
表5 X13无菌发酵滤液对番茄果实品质的影响
Table 5 Effects of cell-free fermentation filtrate of X13 on the preservation quality of tomato
储藏时间 Storage time/d | 硬度Firmness/(kg·cm-2) | 可溶性固形物Soluble solid content/% | 可滴定酸含量Titration acid content /% | Vc/(mg·100 g-1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ck | X13 | Δ/% | Ck | X13 | Δ/% | Ck | X13 | Δ/% | Ck | X13 | Δ/% | ||||
0 | 22.10±2.31a | 22.10±1.35a | 0.0 | 7.30±1.02a | 7.30±0.55a | 0.0 | 0.62±0.11a | 0.62±0.11a | 0.0 | 47.22±2.36a | 47.22±3.14a | 0.0 | |||
4 | 18.52±3.02b | 20.45±2.04a | 10.4 | 7.21±1.20a | 7.25±1.01a | 0.6 | 0.54±0.08a | 0.58±0.12a | 7.4 | 45.11±3.54a | 45.27±3.02a | 0.4 | |||
8 | 17.35±4.02a | 18.32±1.65a | 5.6 | 7.16±1.34a | 7.22±1.20a | 0.8 | 0.41±0.05a | 0.48±0.12a | 17.1 | 40.12±2.14a | 42.57±4.01a | 6.1 | |||
12 | 16.23±2.01a | 18.24±1.56a | 12.4 | 7.00±0.85a | 7.11±0.55a | 1.6 | 0.37±0.09a | 0.44±0.11a | 18.9 | 36.12±2.65b | 40.28±3.25a | 11.5 | |||
16 | 15.36±1.02a | 17.33±1.33a | 12.8 | 6.80±0.97a | 7.07±0.68a | 4.0 | 0.28±0.05a | 0.35±0.12a | 25.0 | 32.02±3.01b | 38.21±3.01a | 19.3 | |||
20 | 13.11±1.21b | 15.08±0.58a | 15.0 | 6.32±0.59a | 6.52±0.51a | 3.2 | 0.25±0.06a | 0.30±0.09a | 20.0 | 30.36±3.20b | 36.45±3.41a | 20.1 |
[1] | 宋姝婧, 王晓拓, 王志东, 等. 5种植物精油对樱桃番茄常温保鲜效果的影响[J]. 核农学报, 2015, 29(5):932-939. |
Song SJ, Wang XT, Wang ZD, et al. Effect of five essential oils on cherry tomatoes preservation at room temperature[J]. J Nucl Agric Sci, 2015, 29(5):932-939. | |
[2] | Janisiewicz WJ, Conway WS. Combining biological control with physical and chemical treatments to control fruit decay after harvest[J]. Stewart Postharvest Rev, 2010, 6(1):1-16. |
[3] | 桑雪, 刘阳, 王锐银, 等. 一株引起番茄果腐病病原菌的分离鉴定[J]. 大连工业大学学报, 2018, 37(3):167-170. |
Sang X, Liu Y, Wang RY, et al. Isolation and identification of a pathogen causing tomato fruit rot[J]. J Dalian Polytech Univ, 2018, 37(3):167-170. | |
[4] |
Li QL, Ning P, Zheng L, et al. Effects of volatile substances of Streptomyces globisporus JK-1 on control of Botrytis cinerea on tomato fruit[J]. Biol Control, 2012, 61(2):113-120.
doi: 10.1016/j.biocontrol.2011.10.014 URL |
[5] |
Miedes E, Lorences EP. The implication of xyloglucan endotransglucosylase/hydrolase(XTHs)in tomato fruit infection by Penicillium expansum link. A[J]. J Agric Food Chem, 2007, 55(22):9021-9026.
doi: 10.1021/jf0718244 URL |
[6] |
Strashnov Y, Elad Y, Sivan A, et al. Control of Rhizoctonia solani fruit rot of tomatoes by Trichoderma harzianum Rifai[J]. Crop Prot, 1985, 4(3):359-364.
doi: 10.1016/0261-2194(85)90039-0 URL |
[7] |
Punja ZK, Rodriguez G, Tirajoh A. Effects of Bacillus subtilis strain QST 713 and storage temperatures on post-harvest disease development on greenhouse tomatoes[J]. Crop Prot, 2016, 84:98-104.
doi: 10.1016/j.cropro.2016.02.011 URL |
[8] |
Sun C, Fu D, Jin LF, et al. Chitin isolated from yeast cell wall induces the resistance of tomato fruit to Botrytis cinerea[J]. Carbohydr Polym, 2018, 199:341-352.
doi: 10.1016/j.carbpol.2018.07.045 URL |
[9] | 周凯强, 李志洪, 覃书漫, 等. 余甘子采后软腐病拮抗菌的筛选、鉴定及其防效[J]. 微生物学通报, 2020, 47(2):459-468. |
Zhou KQ, Li ZH, Qin SM, et al. Identification and biocontrol effect of antagonistic Streptomyces against postharvest Penicillium fruit rot of Phyllanthus emblica L.[J]. Microbiol China, 2020, 47(2):459-468. | |
[10] | 郭雪松, 田丽波, 商桑, 等. 芒果蒂腐病拮抗放线菌A10和A17的分离、鉴定和特征化研究[J]. 浙江农业学报, 2020, 32(3):460-468. |
Guo XS, Tian LB, Shang S, et al. Isolation, identification and characterization of antagonistic actinomycetes A10 and A17 against Botryodiplodia theobromae[J]. Acta Agric Zhejiangensis, 2020, 32(3):460-468. | |
[11] |
Zhang QM, Yong DJ, Zhang Y, et al. Streptomyces rochei A-1 induces resistance and defense-related responses against Botryosphaeria dothidea in apple fruit during storage[J]. Postharvest Biol Technol, 2016, 115:30-37.
doi: 10.1016/j.postharvbio.2015.12.013 URL |
[12] | 方中达. 植病研究方法[M]. 第三版. 北京: 中国农业出版社, 1998. |
Fang ZD. Research methods of plant pathology[M]. 3rd. ed. Beijing: China Agriculture Press, 1998. | |
[13] | 魏景超. 真菌鉴定手册[M]. 上海: 上海科学技术出版社, 1979. |
Wei JC. Handbook of Fungal Identification[M]. Shanghai:Shanghai Scientific & Technical Publishers, 1979. | |
[14] | 牛晓磊, 薛泉宏, 涂璇, 等. 6株生防放线菌对辣椒疫霉的皿内拮抗研究[J]. 西北农林科技大学学报:自然科学版, 2005, 33(1):55-58. |
Niu XL, Xue QH, Tu X, et al. Study on the antagonistic activity of 6 strains of actinomycetes against Phytophthora capsici in plate[J]. J Northwest Sci Tech Univ Agric For, 2005, 33(1):55-58. | |
[15] | 刘大群, 杨文香, 祁碧菽, 等. 拮抗链霉菌Men-myco-93-63及其发酵液对棉花黄萎病菌生长的影响[J]. 河北农业大学学报, 1999, 22(4):79-82. |
Liu DQ, Yang WX, Qi BS, et al. Effect of men-myco-93-63 and its fermentation liquid on the growth of Verticillium dahliae strains of cotton[J]. J Agric Univ Hebei, 1999, 22(4):79-82. | |
[16] | 程丽娟, 薛泉宏. 微生物学实验技术[M]. 西安: 世界图书出版社, 2000. |
Cheng LJ, Xue QH. Experimental technique in microbiology[M]. Xi’an: World Publishing corporation, 2000. | |
[17] | 东秀珠, 蔡妙. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. |
Dong XZ, Cai MY. Manual of Determinative Bacteriology[M]. Beijing: Science Press, 2001. | |
[18] | 曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导[M]. 北京: 中国轻工业出版社, 2007. |
Cao JK, Jiang WB, Zhao YM. Experiment guidance of postharvest physiology and biochemistry of fruits and vegetables[M]. Beijing: China Light Industry Press, 2007. | |
[19] | 罗春香, 赵玉良, 王海燕, 等. 12种杀菌剂对樱桃流胶病菌的敏感性及其防治效果研究[J]. 中国果树, 2020(4):27-30. |
Luo CX, Zhao YL, Wang HY, et al. Bactericidal activities of twelve bactericides and their field applications against pathogen of the cherry gummosis[J]. China Fruits, 2020(4):27-30. | |
[20] | 康海婷, 凌丹燕, 吴志娟, 等. 蓝莓枝干溃疡病病原鉴定及品种抗病性研究[J]. 浙江农业学报, 2019, 31(3):436-443. |
Kang HT, Ling DY, Wu ZJ, et al. Pathogen isolation and identification of blueberry stem canker and screening of disease resistant cultivars[J]. Acta Agric Zhejiangensis, 2019, 31(3):436-443. | |
[21] | 王亚红, 李永丽, 常乐, 等. 对三种苹果病原菌具抑制作用的新疆野苹果内生真菌的分离与鉴定[J]. 果树学报, 2020, 37(3):390-396. |
Wang YH, Li YL, Chang L, et al. Isolation and identification of endophytic fungi resistant to three apple pathogens from the branches of Malus sieversii[J]. J Fruit Sci, 2020, 37(3):390-396. | |
[22] | 张玮, 姚晟伟, 张国军, 等. 中国葡萄主要品种对葡萄座腔菌的抗性评价[J]. 植物保护, 2017, 43(3):177-180, 212. |
Zhang W, Yao SW, Zhang GJ, et al. Resistant evaluation of main grape cultivars in China to Botryosphaeria dothidea[J]. Plant Prot, 2017, 43(3):177-180, 212. | |
[23] | 朱琪丽, 赵会长, 谢甲涛, 等. 葡萄座腔菌侵染柑橘果实的报道[J]. 植物病理学报, 2018, 48(2):154-158. |
Zhu QL, Zhao HZ, Xie JT, et al. Report of Botryosphaeria dothidea infecting Citrus[J]. Acta Phytopathol Sin, 2018, 48(2):154-158. | |
[24] |
Thomidis T, Michailides TJ, Exadaktylou E. Neofusicoccum parvum associated with fruit rot and shoot blight of peaches in Greece[J]. Eur J Plant Pathol, 2011, 131(4):661-668.
doi: 10.1007/s10658-011-9840-0 URL |
[25] |
Malviya MK, Pandey A, Trivedi P, et al. Chitinolytic activity of cold tolerant antagonistic species of Streptomyces isolated from glacial sites of Indian Himalaya[J]. Curr Microbiol, 2009, 59(5):502-508.
doi: 10.1007/s00284-009-9466-z pmid: 19688382 |
[26] | Jain PK, Jain PC. Isolation, characterization and antifungal activity of Streptomyces sampsonii GS 1322[J]. Indian J Exp Biol, 2007, 45(2):203-206. |
[27] | Savi DC, Haminiuk CWI, Sora G, et al. Antitumor, antioxidant and antibacterial activities of secondary metabolites extracted by endophytic actinomycetes isolated from Vochysia divergens[J]. Int J Pharm Chem Biol Sci, 2015, 5(1):347-356. |
[28] | 李姝江, 朱天辉, 余琴, 等. 桑氏链霉菌突变株的抑菌活性及对杨树紫纹羽病的盆栽防效[J]. 植物保护, 2015, 41(5):61-68. |
Li SJ, Zhu TH, Yu Q, et al. Antifungal activity of mutant strains of Streptomyces sampsonii and their control effects on poplar purple root disease in potted experiment[J]. Plant Prot, 2015, 41(5):61-68. | |
[29] | 郭虹娜, 刘佳, 奚裕婷, 等. 拮抗酵母挥发性单体桂皮醛对草莓采后灰霉病的防治[J]. 食品科学, 2020, 41(13):212-220. |
Guo HN, Liu J, Xi YT, et al. Biocontrol effect of volatile monomer trans-cinnamaldehyde with antagonistic capacity to yeast on gray mold disease of postharvest strawberry fruit[J]. Food Sci, 2020, 41(13):212-220. | |
[30] | 孙平平, 贾晓辉, 崔建潮, 等. 梨灰霉病拮抗放线菌L-30的筛选、鉴定及作用机制研究[J]. 园艺学报, 2016, 43(12):2335-2346. |
Sun PP, Jia XH, Cui JC, et al. Selection, identification and characterization of Actinomyces L-30 for the biocontrol of pear gray mold[J]. Acta Hortic Sin, 2016, 43(12):2335-2346. | |
[31] |
季小诗, 郭红莲, 王笑笑, 等. 拮抗菌发酵液对冬枣贮藏品质的影响[J/OL]. 食品与发酵工业, 2021. DOI: 10.13995/j.cnki.11-1802/ts.026170.
doi: 10.13995/j.cnki.11-1802/ts.026170 |
Ji XS, Guo HL, Wang XX, et al. Effects of an antagonistic yeast fermentation broth on the storage quality of winter jujube[J/OL]. Food and Fermentation Industry, 2021. DOI: 10.13995/j.cnki.11-1802/ts.026170.
doi: 10.13995/j.cnki.11-1802/ts.026170 |
|
[32] | 施俊凤, 孙常青, 张婧婷. 采前喷施洋葱伯克霍尔德菌Burkholderia contaminans对草莓采后腐烂和品质的影响[J]. 植物保护学报, 2018, 45(2):382-388. |
Shi JF, Sun CQ, Zhang JT. Effects of preharvest spraying of Burkholderia contaminans on postharvest decay and quality of strawberry[J]. J Plant Prot, 2018, 45(2):382-388. |
[1] | 温晓蕾, 李建嫄, 李娜, 张娜, 杨文香. 小麦叶锈菌与小麦互作的酵母双杂交cDNA文库构建与应用[J]. 生物技术通报, 2023, 39(9): 136-146. |
[2] | 吴巧茵, 施友志, 李林林, 彭政, 谭再钰, 刘利平, 张娟, 潘勇. 类胡萝卜素降解菌株的原位筛选及其在雪茄提质增香中的应用[J]. 生物技术通报, 2023, 39(9): 192-201. |
[3] | 江海溶, 崔若琪, 王玥, 白淼, 张明露, 任连海. NH3和H2S降解功能菌的分离鉴定及降解特性研究[J]. 生物技术通报, 2023, 39(9): 246-254. |
[4] | 薛宁, 王瑾, 李世新, 刘叶, 程海娇, 张玥, 毛雨丰, 王猛. 多基因同步调控结合高通量筛选构建高产L-苯丙氨酸的谷氨酸棒杆菌工程菌株[J]. 生物技术通报, 2023, 39(9): 268-280. |
[5] | 马俊秀, 吴皓琼, 姜威, 闫更轩, 胡基华, 张淑梅. 蔬菜软腐病菌广谱拮抗细菌菌株筛选鉴定及防效研究[J]. 生物技术通报, 2023, 39(7): 228-240. |
[6] | 谢东, 汪流伟, 李宁健, 李泽霖, 徐子航, 张庆华. 一株多功能菌株的发掘、鉴定及解磷条件优化[J]. 生物技术通报, 2023, 39(7): 241-253. |
[7] | 李典典, 粟元, 李洁, 许文涛, 朱龙佼. 抗菌适配体的筛选与应用进展[J]. 生物技术通报, 2023, 39(6): 126-132. |
[8] | 董聪, 高庆华, 王玥, 罗同阳, 王庆庆. 基于联合策略提高FAD依赖的葡萄糖脱氢酶的酵母表达[J]. 生物技术通报, 2023, 39(6): 316-324. |
[9] | 李天顺, 李宸葳, 王佳, 朱龙佼, 许文涛. 功能核酸筛选过程中次级文库的有效制备[J]. 生物技术通报, 2023, 39(3): 116-122. |
[10] | 崔若琪, 张玲悦, 江海溶, 张毓羚, 张明露, 任连海. NH3和H2S除臭菌剂的制备及其对厨余垃圾堆肥除臭效果和机理探究[J]. 生物技术通报, 2023, 39(10): 311-322. |
[11] | 王欣怡, 王晓倩, 王红军, 晁跃辉. FLAG标签纳米抗体的筛选、表达及验证[J]. 生物技术通报, 2023, 39(10): 323-331. |
[12] | 刘金升, 陈振娅, 霍毅欣, 郭淑元. FACS技术在酶定向进化中的应用[J]. 生物技术通报, 2023, 39(10): 93-106. |
[13] | 江美彦, 周杨, 刘仁浪, 姚菲, 杨云舒, 侯凯, 冯冬菊, 吴卫. 白芷根际促生菌的筛选及其促生效果研究[J]. 生物技术通报, 2022, 38(8): 167-178. |
[14] | 王亚军, 司运美. 除磷菌CP-7的筛选及其降解特性研究[J]. 生物技术通报, 2022, 38(7): 258-268. |
[15] | 赵子玉, 王春光, 吕建存, 李继开, 张铁. 超广谱β-内酰胺酶CTX-M-14中药抑制剂的筛选及芸香苷抑酶作用研究[J]. 生物技术通报, 2022, 38(6): 235-244. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||