生物技术通报 ›› 2023, Vol. 39 ›› Issue (10): 107-114.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0479
万其武1,2,4(), 包旭东1,2, 丁柯1,3, 牟华明4(), 罗阳1()
收稿日期:
2023-05-18
出版日期:
2023-10-26
发布日期:
2023-11-28
通讯作者:
罗阳,男,博士,教授,研究方向:疾病早期检测、分子诊断;E-mail: luoy@cqu.edu.cn;作者简介:
万其武,男,硕士研究生,研究方向:疾病早期检测、分子诊断;E-mail: qiwuwan@163.com
基金资助:
WAN Qi-wu1,2,4(), BAO Xu-dong1,2, DING Ke1,3, MOU Hua-ming4(), LUO Yang1()
Received:
2023-05-18
Published:
2023-10-26
Online:
2023-11-28
摘要:
快速、准确地检测病原微生物对于疫情防控和保障人民生命健康具有重大意义。近几年,研究者们通过合理地设计微流控芯片,将微流控技术与各种检测技术相结合,已经开发出了多种用于病原微生物检测的技术方法。相较于传统的病原微生物检测技术,微流控检测技术优势突出,具有操作人员技术要求不高、样本需求量少和自动化程度高等优点,适用于各种复杂环境下病原微生物的精准、快速检测。本文对微流控技术在病毒、细菌、真菌、衣原体及支原体等病原微生物的检测应用进行了综述,以期为病原微生物的检测提供研究思路,促进微流控技术在病原微生物检测中的发展,提高对疾病的预防和控制能力。
万其武, 包旭东, 丁柯, 牟华明, 罗阳. 微流控技术在病原微生物检测中的研究进展[J]. 生物技术通报, 2023, 39(10): 107-114.
WAN Qi-wu, BAO Xu-dong, DING Ke, MOU Hua-ming, LUO Yang. Research Progress in Microfluidic Technology in the Detection of Pathogenic Microorganisms[J]. Biotechnology Bulletin, 2023, 39(10): 107-114.
图2 病毒检测微流控系统 a:用于样本应答病毒核酸检测的全自动离心微流体系统[11];b:对SARS-CoV-2进行无仪器、基于CRISPR诊断的微流控系统[12];c:一种利用RT-LAMP检测载体病毒的自供电快速加载微流控芯片[13]
Fig. 2 Microfluidic system for virus detection a: Fully automated centrifugal microfluidic system for sample response viral nucleic acid detection[11]; b: a microfluidic system based on CRISPR diagnosis without instruments for SARS-CoV-2[12]; c: a self-powered fast-loading microfluidic chip using RT-LAMP to detect carrier viruses[13]
图3 细菌检测微流控系统 a:用于血液中大肠杆菌和铜绿假单胞菌的多重检测的微流控平台[18];b:用于检测单细胞水平耐药性的微流控芯片[20];c:基于磁分离、酶催化和电化学阻抗分析的鼠伤寒沙门氏菌微流体生物传感器[22];d:使用LNA/DNA分子信标进行细菌检测和绝对定量的一锅数字微流控系统[23]
Fig. 3 Microfluidic system for bacterial detection a: Microfluidic platform for multiple detection of E. coli and Pseudomonas aeruginosa in blood[18]. b: Microfluidic chip for detecting drug resistance at single cell level[20]. c: Salmonella typhimurium microfluidic biosensor based on magnetic separation, enzyme catalysis and electrochemical impedance analysis[22]. d: One-pot digital microfluidic system using LNA/DNA molecular beacons for bacterial detection and absolute quantification[23]
[1] |
Zhang DX, Bi HY, Liu BH, et al. Detection of pathogenic microorganisms by microfluidics based analytical methods[J]. Anal Chem, 2018, 90(9): 5512-5520.
doi: 10.1021/acs.analchem.8b00399 pmid: 29595252 |
[2] |
Trinh TND, Lee NY. Advances in nucleic acid amplification-based microfluidic devices for clinical microbial detection[J]. Chemosensors, 2022, 10(4): 123.
doi: 10.3390/chemosensors10040123 URL |
[3] |
Fernandes AC, Semenova D, Panjan P, et al. Multi-function microfluidic platform for sensor integration[J]. N Biotechnol, 2018, 47: 8-17.
doi: 10.1016/j.nbt.2018.03.001 URL |
[4] |
Ahmed I, Akram Z, Bule M, et al. Advancements and potential applications of microfluidic approaches—a review[J]. Chemosensors, 2018, 6(4): 46.
doi: 10.3390/chemosensors6040046 URL |
[5] |
Ait M L, Mozokhina A, Tokarev A, et al. Virus replication and competition in a cell culture: application to the SARS-CoV-2 variants[J]. Appl Math Lett, 2022, 133: 108217.
doi: 10.1016/j.aml.2022.108217 URL |
[6] |
Li X, Zhao XY, Yang WH, et al. Stretch-driven microfluidic chip for nucleic acid detection[J]. Biotechnol Bioeng, 2021, 118(9): 3559-3568.
doi: 10.1002/bit.v118.9 URL |
[7] |
Su WD, Qiu JJ, Mei Y, et al. A microfluidic cell chip for virus isolation via rapid screening for permissive cells[J]. Virol Sin, 2022, 37(4): 547-557.
doi: 10.1016/j.virs.2022.04.011 pmid: 35504535 |
[8] |
Saraf N, Villegas M, Willenberg BJ, et al. Multiplex viral detection platform based on a aptamers-integrated microfluidic channel[J]. ACS Omega, 2019, 4(1): 2234-2240.
doi: 10.1021/acsomega.8b03277 pmid: 30729227 |
[9] | Guan XJ, Wu F, Mao M, et al. A microfluidic platform for the ultrasensitive detection of human enterovirus 71[J]. Sens Actuat Rep, 2021, 3: 100046. |
[10] |
Eivazzadeh-Keihan R, Pashazadeh-Panahi P, Mahmoudi T, et al. Dengue virus: a review on advances in detection and trends - from conventional methods to novel biosensors[J]. Mikrochim Acta, 2019, 186(6): 329.
doi: 10.1007/s00604-019-3420-y pmid: 31055654 |
[11] |
Tian F, Liu C, Deng JQ, et al. A fully automated centrifugal microfluidic system for sample-to-answer viral nucleic acid testing[J]. Sci China Chem, 2020, 63(10): 1498-1506.
doi: 10.1007/s11426-020-9800-6 |
[12] |
Li ZY, Ding X, Yin K, et al. Instrument-free, CRISPR-based diagnostics of SARS-CoV-2 using self-contained microfluidic system[J]. Biosens Bioelectron, 2022, 199: 113865.
doi: 10.1016/j.bios.2021.113865 URL |
[13] |
Yao YH, Zhao N, Jing WW, et al. A self-powered rapid loading microfluidic chip for vector-borne viruses detection using RT-LAMP[J]. Sens Actuat B, 2021, 333: 129521.
doi: 10.1016/j.snb.2021.129521 URL |
[14] |
Kim S, Akarapipad P, Nguyen BT, et al. Direct capture and smartphone quantification of airborne SARS-CoV-2 on a paper microfluidic chip[J]. Biosens Bioelectron, 2022, 200: 113912.
doi: 10.1016/j.bios.2021.113912 URL |
[15] |
Zhang Y, Hu XZ, Wang QJ. Review of microchip analytical methods for the determination of pathogenic Escherichia coli[J]. Talanta, 2021, 232: 122410.
doi: 10.1016/j.talanta.2021.122410 URL |
[16] |
Boehm DA, Gottlieb PA, Hua SZ. On-chip microfluidic biosensor for bacterial detection and identification[J]. Sens Actuat B, 2007, 126(2): 508-514.
doi: 10.1016/j.snb.2007.03.043 URL |
[17] |
Mairhofer J, Roppert K, Ertl P. Microfluidic systems for pathogen sensing: a review[J]. Sensors, 2009, 9(6): 4804-4823.
doi: 10.3390/s90604804 pmid: 22408555 |
[18] |
Costa SP, Caneira CRF, Chu V, et al. A microfluidic platform combined with bacteriophage receptor binding proteins for multiplex detection of Escherichia coli and Pseudomonas aeruginosa in blood[J]. Sens Actuat B, 2023, 376: 132917.
doi: 10.1016/j.snb.2022.132917 URL |
[19] |
Kim S, Romero-Lozano A, Hwang DS, et al. A guanidinium-rich polymer as a new universal bioreceptor for multiplex detection of bacteria from environmental samples[J]. J Hazard Mater, 2021, 413: 125338.
doi: 10.1016/j.jhazmat.2021.125338 URL |
[20] |
Song KN, Yu ZQ, Zu XY, et al. Microfluidic chip for detection of drug resistance at the single-cell level[J]. Micromachines, 2022, 14(1): 46.
doi: 10.3390/mi14010046 URL |
[21] |
Sun DL, Fan TT, Liu F, et al. A microfluidic chemiluminescence biosensor based on multiple signal amplification for rapid and sensitive detection of E.coli O157: H7[J]. Biosens Bioelectron, 2022, 212: 114390.
doi: 10.1016/j.bios.2022.114390 URL |
[22] |
Liu YJ, Jiang D, Wang SY, et al. A microfluidic biosensor for rapid detection of Salmonella typhimurium based on magnetic separation, enzymatic catalysis and electrochemical impedance analysis[J]. Chin Chem Lett, 2022, 33(6): 3156-3160.
doi: 10.1016/j.cclet.2021.10.064 URL |
[23] |
Kao YT, Calabrese S, Borst N, et al. Microfluidic one-pot digital droplet FISH using LNA/DNA molecular beacons for bacteria detection and absolute quantification[J]. Biosensors, 2022, 12(4): 237.
doi: 10.3390/bios12040237 URL |
[24] |
Cao DJ, Wu S, Xi CL, et al. Preparation of long single-strand DNA concatemers for high-level fluorescence in situ hybridization[J]. Commun Biol, 2021, 4(1): 1224.
doi: 10.1038/s42003-021-02762-2 |
[25] |
Zhou WT, Le J, Chen Y, et al. Recent advances in microfluidic devices for bacteria and fungus research[J]. Trac Trends Anal Chem, 2019, 112: 175-195.
doi: 10.1016/j.trac.2018.12.024 URL |
[26] |
Soares RRG, Santos DR, Pinto IF, et al. Point-of-use ultrafast single-step detection of food contaminants: a novel microfluidic fluorescence-based immunoassay with integrated photodetection[J]. Procedia Eng, 2016, 168: 329-332.
doi: 10.1016/j.proeng.2016.11.208 URL |
[27] |
Schell WA, Benton JL, Smith PB, et al. Evaluation of a digital microfluidic real-time PCR platform to detect DNA of Candida albicans in blood[J]. Eur J Clin Microbiol Infect Dis, 2012, 31(9): 2237-2245.
doi: 10.1007/s10096-012-1561-6 URL |
[28] |
Wulff-Burchfield E, Schell WA, Eckhardt AE, et al. Microfluidic platform versus conventional real-time polymerase chain reaction for the detection of Mycoplasma pneumoniae in respiratory specimens[J]. Diagn Microbiol Infect Dis, 2010, 67(1): 22-29.
doi: 10.1016/j.diagmicrobio.2009.12.020 URL |
[29] |
Wang AY, Wu ZH, Huang YH, et al. A 3D-printed microfluidic device for qPCR detection of macrolide-resistant mutations of Mycoplasma pneumoniae[J]. Biosensors, 2021, 11(11): 427.
doi: 10.3390/bios11110427 URL |
[30] |
Dean D, Turingan RS, Thomann HU, et al. A multiplexed microfluidic PCR assay for sensitive and specific point-of-care detection of Chlamydia trachomatis[J]. PLoS One, 2012, 7(12): e51685.
doi: 10.1371/journal.pone.0051685 URL |
[31] |
Ye X, Li Y, Wang LJ, et al. All-in-one microfluidic nucleic acid diagnosis system for multiplex detection of sexually transmitted pathogens directly from genitourinary secretions[J]. Talanta, 2021, 221: 121462.
doi: 10.1016/j.talanta.2020.121462 URL |
[32] |
Li L, Miao BG, Li Z, et al. Sample-to-answer hepatitis B virus DNA detection from whole blood on a centrifugal microfluidic platform with double rotation axes[J]. ACS Sens, 2019, 4(10): 2738-2745.
doi: 10.1021/acssensors.9b01270 URL |
[1] | 薛宁, 王瑾, 李世新, 刘叶, 程海娇, 张玥, 毛雨丰, 王猛. 多基因同步调控结合高通量筛选构建高产L-苯丙氨酸的谷氨酸棒杆菌工程菌株[J]. 生物技术通报, 2023, 39(9): 268-280. |
[2] | 马亚男, 卢旭, 魏云春, 李康, 魏若男, 李胜, 马绍英. 葡萄AKR基因家族的鉴定和组织特异性表达分析[J]. 生物技术通报, 2021, 37(8): 141-151. |
[3] | 赵睿骁, 韩斐, 江明锋, 曾莲, 韩嘉钰, 黄盈, 周航. PCR-膜芯片技术在牦牛及犏牛肉制品的真假鉴定中的应用[J]. 生物技术通报, 2020, 36(1): 202-208. |
[4] | 刘娜, 杜盼盼, 杨扬, 李小毛. 基于微流控技术的外泌体分离方法的研究进展[J]. 生物技术通报, 2019, 35(1): 207-213. |
[5] | 马富强, 杨广宇. 基于液滴微流控技术的超高通量筛选体系及其在合成生物学中的应用[J]. 生物技术通报, 2017, 33(1): 83-92. |
[6] | 王伟轩, 孙静弈, 刘伟娜, 厚凌宇, 玉王宁, 何湘伟, 谢响明. 微流控芯片在植物细胞研究中的应用进展[J]. 生物技术通报, 2016, 32(6): 19-29. |
[7] | 翟绪昭, 王广彬, 赵亮涛, 曾海娟, 李建武, 丁承超, 宋春美, 刘箐. 高通量生物分析技术及应用研究进展[J]. 生物技术通报, 2016, 32(6): 38-46. |
[8] | 李丹, 高海军. 多元自动化基因组工程[J]. 生物技术通报, 2015, 31(6): 60-66. |
[9] | 吕雪峰,阿布力孜?阿布力米提,帕娜尔,陶卫东,邢巍婷,采复拉,郑文新. 利用基因芯片技术鉴别山羊绒和绵羊绒[J]. 生物技术通报, 2014, 0(1): 196-200. |
[10] | 吴承菲, 郭双生, 赵琦, 孙建锋. 模拟微重力对拟南芥幼苗的生物学效应[J]. 生物技术通报, 2013, 0(5): 58-62. |
[11] | 周爽, 贾芸芳, 孙晓轩, 邢克礼. 基于LAPS 系统的蛋白芯片表面修饰技术的对比研究 [J]. 生物技术通报, 2013, 0(4): 215-220. |
[12] | 张永江, 辛言言, 朱水芳, 李世访. 苹果锈果类病毒属属级寡核苷酸芯片筛查方法的建立[J]. 生物技术通报, 2013, 0(2): 151-156. |
[13] | 高兴, 辛文文, 高姗, 康琳, 王景林. 11种(株)食源性细菌基因芯片检测方法的建立[J]. 生物技术通报, 2013, 0(12): 123-128. |
[14] | 张明哲,张晓峰,陈曦,吴姗,陈笑梅,周圆. 醛基片PCR芯片技术在转基因玉米品系检测中的应用研究[J]. 生物技术通报, 2013, 0(10): 66-70. |
[15] | 肖军, 杨涛, 杨镇, 王红, 王丽萍, 陈珣, 肇莹, 王娜, 龚娜. 应用基因芯片分析植物内生菌醇提取物处理条件下水稻的基因表达图谱[J]. 生物技术通报, 2013, 0(1): 89-95. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||