生物技术通报 ›› 2023, Vol. 39 ›› Issue (10): 175-183.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0369
收稿日期:
2023-04-19
出版日期:
2023-10-26
发布日期:
2023-11-28
通讯作者:
郭华春,男,教授,研究方向:马铃薯育种与栽培;E-mail: ynghc@126.com作者简介:
陶娜,女,硕士,研究方向:甘薯遗传育种;E-mail: 2019157697@qq.com
基金资助:
TAO Na1,2(), LI Mao-xing1,2, GUO Hua-chun1,2()
Received:
2023-04-19
Published:
2023-10-26
Online:
2023-11-28
摘要:
遗传转化体系对植物基因功能的验证具有重要意义,为在甘薯(Ipomoea batatas L.)中建立发根农杆菌(Agrobacterium rhizogenes)介导的遗传转化体系,本研究采用3×3×5三因素试验设计研究发根农杆菌侵染时间、外植体类型、发根农杆菌菌株对甘薯毛状根诱导率的影响。确定合适的外植体类型、侵染时间,在此基础上采用5×5双因子设计,研究5种发根农杆菌菌株和甘薯品种(系)对甘薯发根诱导率的影响。用PCR技术检测诱导出的毛状根,证实了发根农杆菌 Ri质粒的rolB 基因已经整合到甘薯细胞基因组中。结果表明,发根农杆菌侵染时间、外植体类型、发根农杆菌菌株、甘薯品种均影响发根诱导率,且各因子间存在交互作用。最适宜发根的外植体为茎段,最佳侵染时间是20 min,‘徐薯22’适宜菌株为MSU440,‘泰中6号’适宜菌株为K599,‘1610’适宜菌株为C58C1,‘YS’适宜菌株为K599,‘灰薯’适宜菌株为C58C1。采用发根农杆菌菌株MSU440,以‘徐薯22’茎段为外植体、农杆菌侵染20 min,最高获得了79.63%的毛状根诱导率。构建过表达载体进行毛状根遗传转化,通过目的基因的PCR 扩增发现甘薯毛状根的转基因效率为38.1%。建立了发根农杆菌介导的甘薯遗传转化体系,为甘薯进一步的转基因育种奠定基础。
陶娜, 李茂兴, 郭华春. 发根农杆菌介导的甘薯遗传转化体系优化[J]. 生物技术通报, 2023, 39(10): 175-183.
TAO Na, LI Mao-xing, GUO Hua-chun. Optimization of Sweet Potato Genetic Transformation System Mediated by Agrobacterium rhizogenes[J]. Biotechnology Bulletin, 2023, 39(10): 175-183.
发根农杆菌菌株 Agrobacterium strain | 冠瘿碱类型 Crown gallin type | 抗性 Resistance |
---|---|---|
Ar.1193 | 农杆碱型 Agropine | 链霉素 Streptomycin |
K599 | 黄瓜碱型 Cucumopine | 链霉素 Streptomycin |
C58C1 | 农杆碱型 Agropine | 链霉素 Streptomycin |
ArQual | 农杆碱型 Agropine | 链霉素 Streptomycin |
MSU440 | 农杆碱型 Agropine | 链霉素 Streptomycin |
表1 发根农杆菌类型及抗性
Table 1 A. rhizogenes strains and their resistances
发根农杆菌菌株 Agrobacterium strain | 冠瘿碱类型 Crown gallin type | 抗性 Resistance |
---|---|---|
Ar.1193 | 农杆碱型 Agropine | 链霉素 Streptomycin |
K599 | 黄瓜碱型 Cucumopine | 链霉素 Streptomycin |
C58C1 | 农杆碱型 Agropine | 链霉素 Streptomycin |
ArQual | 农杆碱型 Agropine | 链霉素 Streptomycin |
MSU440 | 农杆碱型 Agropine | 链霉素 Streptomycin |
引物名称 Primer name | 引物序列 Primer sequences(5'-3') | 产物长度 Product length/bp |
---|---|---|
rolB-F | AAGTGCTGAAGGAACAATC | 585 |
rolB-R | CAAGTGAATGAACAAGGAAC | |
HBFD1-F | ATGGCTCCTGTTCTCCTTGG | 1 224 |
HBFD1-R | CGCTCCTTGTGATGCTCG |
表2 引物列表
Table 2 List of primers
引物名称 Primer name | 引物序列 Primer sequences(5'-3') | 产物长度 Product length/bp |
---|---|---|
rolB-F | AAGTGCTGAAGGAACAATC | 585 |
rolB-R | CAAGTGAATGAACAAGGAAC | |
HBFD1-F | ATGGCTCCTGTTCTCCTTGG | 1 224 |
HBFD1-R | CGCTCCTTGTGATGCTCG |
图1 不同菌株诱导不同外植体对毛状根的影响 A: Ar.1193; B: ArQual; C: C58C1; D: K599; E: MSU440
Fig. 1 Effects of different explants induced by different strains on hairy roots
图2 不同菌株和侵染时间对毛状根影响 不同小写字母表示处理间差异显著(P<0.05)。下同
Fig. 2 Effects of different strains and infection times on hairy roots Different lowercase letters indicate a significant difference between treatments (P <0.05). The same below
图3 不同菌株对不同甘薯品种(系)毛状根诱导率A-E分别为发根农杆菌对‘徐薯22’‘泰中6号’‘1610’(品系)‘灰薯’‘YS’(品系)的毛状根诱导情况。下同
Fig. 3 Hairy roots induction rates of different sweet potato varieties(lines) by different strains A-E shows the hairy root induction of ‘Xushu 22’ ‘Taizhong No. 6’ ‘1610’ ‘Huishu’ and ‘YS’. The same below
发根农杆菌菌株 Agrobacterium rhizogenes strain | 甘薯品种(系)Sweet potato varieties(lines) | |||||
---|---|---|---|---|---|---|
泰中6号 Taizhong No. 6 | 1610 1610 | 徐薯22 Xushu22 | YS YS | 灰薯 Huishu | 平均诱导率 Mean induction rate | |
Ar.1193 | 56.85±4.38B | 25.93±2.26EF | 43.34±0.68CD | 10.39±0.46HI | 12.81±2.0GH | 29.86 |
K599 | 59.19±4.51B | 48.73±3.09BC | 75.24±5.24A | 25.43±1.70EF | 15.46±1.67FG | 44.81 |
C58C1 | 58.89±4.84B | 57.16±4.76B | 11.80±1.28HI | 19.31±1.60FG | 20.0±0.00FG | 33.43 |
ArQual | 42.94±3.84CD | 22.26±1.73FG | 79.40±1.29A | 19.0±2.58FG | 14.02±2.04FG | 35.52 |
MSU440 | 36.53±4.28DE | 24.60±2.75FG | 79.63±1.85A | 5.69±0.29I | 18.38±2.38FG | 32.97 |
平均诱导率 Average induction rate | 50.88 | 35.74 | 57.89 | 15.97 | 16.13 |
表3 发根农杆菌类型和甘薯品种(系)对毛状根诱导率
Table 3 Type of Agrobacterium rhizogenes and sweet potato varieties(lines)
发根农杆菌菌株 Agrobacterium rhizogenes strain | 甘薯品种(系)Sweet potato varieties(lines) | |||||
---|---|---|---|---|---|---|
泰中6号 Taizhong No. 6 | 1610 1610 | 徐薯22 Xushu22 | YS YS | 灰薯 Huishu | 平均诱导率 Mean induction rate | |
Ar.1193 | 56.85±4.38B | 25.93±2.26EF | 43.34±0.68CD | 10.39±0.46HI | 12.81±2.0GH | 29.86 |
K599 | 59.19±4.51B | 48.73±3.09BC | 75.24±5.24A | 25.43±1.70EF | 15.46±1.67FG | 44.81 |
C58C1 | 58.89±4.84B | 57.16±4.76B | 11.80±1.28HI | 19.31±1.60FG | 20.0±0.00FG | 33.43 |
ArQual | 42.94±3.84CD | 22.26±1.73FG | 79.40±1.29A | 19.0±2.58FG | 14.02±2.04FG | 35.52 |
MSU440 | 36.53±4.28DE | 24.60±2.75FG | 79.63±1.85A | 5.69±0.29I | 18.38±2.38FG | 32.97 |
平均诱导率 Average induction rate | 50.88 | 35.74 | 57.89 | 15.97 | 16.13 |
图5 甘薯毛状根rolB基因PCR检测图 1、2为甘薯的未转化根,作为阴性对照,3-7为Ar.1193、K599、C58C1、ArQual、MSU440侵染的甘薯茎段诱导出的毛状根,下同
Fig. 5 PCR detection of rolB gene in sweet potato hairyroots 1 and 2 are untransformed roots of sweet potato, as negative controls. 3-7 are the hairy roots induced by the stem segments of sweet potato infected by Ar. 1193, K599, C58C1, ArQual, and MSU440. The same below
[1] |
Ding YY, Shen MY, Wei DM, et al. Study on compatible characteristics of wheat and purple sweet potato starches[J]. Food Hydrocoll, 2020, 107: 105961.
doi: 10.1016/j.foodhyd.2020.105961 URL |
[2] |
谢子玉, 王可尔, 赵雯靓, 等. 不同肉色甘薯的营养成分与生物活性[J]. 浙江农业学报, 2021, 33(2): 183-192.
doi: 10.3969/j.issn.1004-1524.2021.02.01 |
Xie ZY, Wang KE, Zhao WL, et al. Nutritional components and bioactivities of sweet potatoes with different flesh colors[J]. Acta Agric Zhejiangensis, 2021, 33(2): 183-192.
doi: 10.3969/j.issn.1004-1524.2021.02.01 |
|
[3] | 沈升法, 项超, 吴列洪, 等. 浙江省甘薯种质资源的品质鉴定与聚类分析[J]. 植物遗传资源学报, 2021, 22(1): 247-259. |
Shen SF, Xiang C, Wu LH, et al. Quantification and cluster analysis of quality-related traits in sweetpotato germplasm resources in Zhejiang Province[J]. J Plant Genet Resour, 2021, 22(1): 247-259.
doi: 10.13430/j.cnki.jpgr.20200608004 |
|
[4] |
Ishida H, Suzuno H, Sugiyama N, et al. Nutritive evaluation on chemical components of leaves, stalks and stems of sweet potatoes(Ipomoea batatas poir)[J]. Food Chem, 2000, 68(3): 359-367.
doi: 10.1016/S0308-8146(99)00206-X URL |
[5] |
Lee H, Kim HS. Isolation and physicochemical property of individual parenchyma cells from mealy sweet potato[J]. Food Sci Biotechnol, 2019, 29(4): 521-529.
doi: 10.1007/s10068-019-00692-8 |
[6] | 张毅, Muzhingi T, 岳瑞雪, 等. 东非不同肉色甘薯的营养品质分析与综合评价[J]. 江苏师范大学学报: 自然科学版, 2020, 38(2): 42-47. |
Zhang Y, Muzhingi T, Yue RX, et al. Nutritive quality analysis and comprehensive evaluation of sweetpotato with different flesh colors in East Africa[J]. J Jiangsu Norm Univ Nat Sci Ed, 2020, 38(2): 42-47. | |
[7] | 杨强强, 闫会, 谢昊, 等. 徐紫薯8号胚性愈伤组织的诱导与体细胞胚发生[J]. 江苏师范大学学报: 自然科学版, 2019, 37(1): 25-29. |
Yang QQ, Yan H, Xie H, et al. Embryogenic callus induction and somatic embryogenesis of sweetpotato cultivar Xuzishu No.8[J]. J Jiangsu Norm Univ Nat Sci Ed, 2019, 37(1): 25-29. | |
[8] | 孙言博, 祝志欣, 黄婷, 等. 海南甘薯主栽品种再生体系的优化[J]. 热带作物学报, 2020, 41(2): 244-251. |
Sun YB, Zhu ZX, Huang T, et al. Optimization of regeneration system of main sweet patato cultivars in Hainan, China[J]. Chin J Trop Crops, 2020, 41(2): 244-251. | |
[9] |
Gutierrez-Valdes N, Häkkinen ST, Lemasson C, et al. Hairy root cultures-a versatile tool with multiple applications[J]. Front Plant Sci, 2020, 11: 33.
doi: 10.3389/fpls.2020.00033 pmid: 32194578 |
[10] |
罗萍, 张昊楠, 徐建民, 等. 发根农杆菌介导的尾巨桉遗传转化体系的建立[J]. 植物研究, 2022, 42(3): 512-520.
doi: 10.7525/j.issn.1673-5102.2022.03.021 |
Luo P, Zhang HN, Xu JM, et al. Establishment of Agrobacterium rhizogenes-mediated genetic transformation system of Eucalyptus urophylla × E. grandis[J]. Bull Bot Res, 2022, 42(3): 512-520. | |
[11] |
Li B, Wang BQ, Li HY, et al. Establishment of Salvia castanea Diels f. tomentosa Stib. hairy root cultures and the promotion of tanshinone accumulation and gene expression with Ag+, methyl jasmonate, and yeast extract elicitation[J]. Protoplasma, 2016, 253(1): 87-100.
doi: 10.1007/s00709-015-0790-9 URL |
[12] |
Jiao J, Gai QY, Wang W, et al. Remarkable enhancement of flavonoid production in a co-cultivation system of Isatis tinctoria L. hairy root cultures and immobilized Aspergillus niger[J]. Ind Crops Prod, 2018, 112: 252-261.
doi: 10.1016/j.indcrop.2017.12.017 URL |
[13] | 罗成科, 彭正松, 蒲利民. 发根农杆菌介导的药用植物遗传转化[J]. 生物技术, 2004, 14(1): 58-61. |
Luo CK, Peng ZS, Pu LM. Genetic transformation of medicinal plants mediated by Agrobacterium rhizogenes[J]. Biotechnology, 2004, 14(1): 58-61. | |
[14] |
Bortesi L, Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond[J]. Biotechnol Adv, 2015, 33(1): 41-52.
doi: S0734-9750(14)00193-1 pmid: 25536441 |
[15] |
Otani M, Mii M, Handa T, et al. Transformation of sweet potato(Ipomoea batatas(L.) Lam.)plants by Agrobacterium rhizogenes[J]. Plant Sci, 1993, 94(1/2): 151-159.
doi: 10.1016/0168-9452(93)90016-S URL |
[16] |
Alcalde MA, Müller M, Munné-Bosch S, et al. Using machine learning to link the influence of transferred Agrobacterium rhizogenes genes to the hormone profile and morphological traits in Centella asiatica hairy roots[J]. Front Plant Sci, 2022, 13: 1001023.
doi: 10.3389/fpls.2022.1001023 URL |
[17] |
陈婉琪, 张鸿, 王进峰, 等. 冬凌草毛状根的优化培养及其提取物的肿瘤细胞增殖抑制活性检测[J]. 生物技术通报, 2018, 34(10): 122-128.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0207 |
Chen WQ, Zhang H, Wang JF, et al. Optimal cultivation of Rabdosia rubescens hairy roots and the inhibition test of its extract on tumor cell growth[J]. Biotechnol Bull, 2018, 34(10): 122-128.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0207 |
|
[18] | 吴飞, 阮龙, 王钰. 发根农杆菌诱导甘薯发根条件的优化[J]. 生物学杂志, 2008, 25(2): 23-25. |
Wu F, Ruan L, Wang Y. Optimization on conditions of sweet potato hairy roots induced by Agrobacterium rhizogenes[J]. J Biol, 2008, 25(2): 23-25. | |
[19] |
Huang XB, Cao LW, Fan JB, et al. CdWRKY2-mediated sucrose biosynthesis and CBF-signaling pathways coordinately contribute to cold tolerance in bermudagrass[J]. Plant Biotechnol J, 2022, 20(4): 660-675.
doi: 10.1111/pbi.v20.4 URL |
[20] | 毛延妍, 邱恬, 薛洁, 等. 苦蘵毛状根体系的建立[J]. 杭州师范大学学报: 自然科学版, 2021, 20(6): 628-633. |
Mao YY, Qiu T, Xue J, et al. Hairy root culture system establishment of Physalis angulate[J]. J Hangzhou Norm Univ Nat Sci Ed, 2021, 20(6): 628-633. | |
[21] | 高向倩. 农杆菌介导的核桃遗传转化体系的建立及应用[D]. 杨凌: 西北农林科技大学, 2021. |
Gao XQ. Establishment and application of Agrobacterium-mediated walnut genetic transformation system[D]. Yangling: Northwest A & F University, 2021. | |
[22] | 庞滨, 张文斌, 钟春梅, 等. 非洲菊转基因毛状根诱导系统的建立[J]. 植物生理学报, 2016, 52(9): 1449-1456. |
Pang B, Zhang WB, Zhong CM, et al. Establishment of transgenic hairy root transformation system in Gerbera hybrida[J]. Plant Physiol J, 2016, 52(9): 1449-1456. | |
[23] | 李群. 除虫菊发状根的诱导及培养条件优化[D]. 杨凌: 西北农林科技大学, 2014. |
Li Q. Hairy roots inducing of Pyrethrum cineraiifolium trey. and the optimization of culture conditions[D]. Yangling: Northwest A & F University, 2014. | |
[24] | 任艳, 李双铃, 尹亮, 等. 发根农杆菌菌株和花生品种对发根诱导率的影响[J]. 山东农业科学, 2018, 50(3): 103-106. |
Ren Y, Li SL, Yin L, et al. Effects of Agrobacterium rhizogenes strains and peanut varieties on induction rate of hairy roots[J]. Shandong Agric Sci, 2018, 50(3): 103-106. | |
[25] | 向润, 江龙. 蔗糖对发根农杆菌C58C1诱导烟草毛状根生长的影响[J]. 广西植物, 2022, 42(5): 802-810. |
Xiang R, Jiang L. Effects of sucrose on growth of tobacco hairy roots induced by Agrobacterium rhizogenes C58C1[J]. Guihaia, 2022, 42(5): 802-810. | |
[26] | 林彩容, 张冬敏, 张文静, 等. 3种农杆菌对茶树发状根诱导的影响[J]. 西北植物学报, 2021, 41(3): 509-516. |
Lin CR, Zhang DM, Zhang WJ, et al. Induction of hairy roots of tea plant by three kinds of Agrobacterium rhizogenes[J]. Acta Bot Boreali Occidentalia Sin, 2021, 41(3): 509-516. | |
[27] |
Sathasivam R, Choi M, Radhakrishnan R, et al. Effects of various Agrobacterium rhizogenes strains on hairy root induction and analyses of primary and secondary metabolites in Ocimum basilicum[J]. Front Plant Sci, 2022, 13: 983776.
doi: 10.3389/fpls.2022.983776 URL |
[28] | 边慧慧, 赵文超, 魏婧薇, 等. 不同发根农杆菌菌株对番茄毛状根诱导率及阳性率的影响[J]. 分子植物育种, 2022, 20(24): 8237-8244. |
Bian HH, Zhao WC, Wei JW, et al. Effects of Agrobacterium rhizogenes strains on induction rate and positive rate of hairy roots[J]. Mol Plant Breed, 2022, 20(24): 8237-8244. | |
[29] |
Zhang W, Zuo ZD, Zhu YX, et al. Fast track to obtain heritable transgenic sweet potato inspired by its evolutionary history as a naturally transgenic plant[J]. Plant Biotechnol J, 2023, 21(4): 671-673.
doi: 10.1111/pbi.v21.4 URL |
[30] | Cao XS, Xie HT, Song ML, et al. Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture[J]. Innovation(Camb), 2022, 4(1): 100345. |
[31] |
Liu X, Wang YR, Zhu HB, et al. Natural allelic variation confers high resistance to sweet potato weevils in sweet potato[J]. Nat Plants, 2022, 8(11): 1233-1244.
doi: 10.1038/s41477-022-01272-1 pmid: 36376755 |
[1] | 徐靖, 朱红林, 林延慧, 唐力琼, 唐清杰, 王效宁. 甘薯IbHQT1启动子的克隆及上游调控因子的鉴定[J]. 生物技术通报, 2023, 39(8): 213-219. |
[2] | 张秀民, 马绍英, 杨洁, 包金玉, 张晓玲, 田鹏, 路亚琦, 李胜. 以次生代谢物产量为目标的西兰花毛状根培养技术体系优化[J]. 生物技术通报, 2021, 37(8): 75-84. |
[3] | 高波, 马娟, 李秀花, 李焦生, 王容燕, 陈书龙. 马铃薯腐烂茎线虫Dd-mel-26基因的克隆与功能分析[J]. 生物技术通报, 2021, 37(7): 107-117. |
[4] | 熊丙全, 刘冬青, 廖相建, 郑雪莲. 茉莉酸甲酯对丹参毛状根有效成分含量的影响[J]. 生物技术通报, 2018, 34(7): 81-84. |
[5] | 陈婉琪, 张鸿, 王进峰, 陈俊杰, 林晓文, 罗结华, 许源, 陈艳芳, 陆幸妍. 冬凌草毛状根的优化培养及其提取物的肿瘤细胞增殖抑制活性检测[J]. 生物技术通报, 2018, 34(10): 122-128. |
[6] | 张鹏. 我国薯类基础研究的动态与展望[J]. 生物技术通报, 2015, 31(4): 65-71. |
[7] | 姚庆收, 姜吉刚, 武玉永, 梁乘榜. 培养基种类对花生毛状根株系生物量和白藜芦醇含量的影响[J]. 生物技术通报, 2014, 0(5): 174-178. |
[8] | 梁雪莲,谢振文. 甘薯遗传作图策略研究与展望[J]. 生物技术通报, 2014, 0(11): 1-6. |
[9] | 李志亮, 吴忠义, 王玉文, 邢浩春, 叶嘉, 张秀海, 黄丛林. 甘薯转基因研究进展[J]. 生物技术通报, 2013, 0(9): 1-6. |
[10] | 杨慧洁;杨世海;. 发根农杆菌介导的药用植物遗传转化研究[J]. , 2009, 0(01): 16-21. |
[11] | 朱允华;刘清;吴朝林;刘明月;. 菜薹花药培养诱导胚状体的研究[J]. , 2008, 0(02): 136-139. |
[12] | 陈岺曦;王伯初;. 生物反应器与药用植物毛状根的大规模培养[J]. , 2007, 0(04): 38-41. |
[13] | 阮龙;姜疆;吴飞;刘晓锋;马代夫;吴跃进;查向东;王钰;. 甘薯、胡萝卜发根单寄主培养体系繁殖马铃薯腐烂线虫的研究[J]. , 2006, 0(06): 103-107. |
[14] | 刘琴;吴震;翁忙玲;李式军. 发根农杆菌Ri质粒及其在植物科学中的应用[J]. , 2002, 0(05): 21-25. |
[15] | 李思义. 利用基因重组技术培育抗病毒甘薯[J]. , 1999, 0(06): 53-53. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||