生物技术通报 ›› 2023, Vol. 39 ›› Issue (10): 163-174.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0403
黄佳艳1(), 冯小艳2, 沈林波2, 王文治2, 胡海燕1(), 张树珍2()
收稿日期:
2023-04-26
出版日期:
2023-10-26
发布日期:
2023-11-28
通讯作者:
胡海燕,女,博士,副教授,研究方向:热带作物遗传育种;E-mail: yanhai0987@163.com;作者简介:
黄佳艳,女,硕士研究生,研究方向:作物病毒学;E-mail: 1223756386@qq.com
基金资助:
HUANG Jia-yan1(), FENG Xiao-yan2, SHEN Lin-bo2, WANG Wen-zhi2, HU Hai-yan1(), ZHANG Shu-zhen2()
Received:
2023-04-26
Published:
2023-10-26
Online:
2023-11-28
摘要:
病程相关蛋白10(pathogenesis related protein 10, PR10)在植物抵抗病毒侵染中发挥重要作用。前期以甘蔗线条花叶病毒(Sugarcane streak mosaic virus, SCSMV)编码的RNA沉默抑制子P1为诱饵,筛选获得一个甘蔗ShPR10蛋白。为探究ShPR10在甘蔗应答SCSMV侵染过程中的功能,利用同源克隆技术克隆甘蔗ShPR10基因并对其编码蛋白进行生物信息学分析,利用绿色荧光蛋白融合表达法分析ShPR10蛋白的亚细胞定位,采用酵母双杂交和双分子荧光互补技术验证ShPR10与SCSMV P1的互作关系,采用农杆菌共浸润瞬时表达系统和Western blot技术分析ShPR10对P1沉默抑制子活性的影响。结果显示,甘蔗ShPR10基因开放阅读框全长570 bp,编码一个不稳定亲水蛋白,蛋白分子量为21.17 kD,等电点为4.77,含有一个P-loop基序,不含跨膜结构域和信号肽。ShPR10二级结构包含51.85%的无规则卷曲、35.98%的α-螺旋、7.41%的延伸链和4.76%的β-转角。ShPR10蛋白与玉米ZmPR10蛋白的氨基酸序列相似性高达91.53%,两者在进化树上聚为一个分支。ShPR10定位在细胞质和细胞核,与SCSMV P1在酵母细胞和烟草细胞中存在互作关系。ShPR10本身不具有沉默抑制子活性,其表达削弱了P1的沉默抑制子活性,但对P1蛋白的含量无明显影响。综上,ShPR10可能通过结合P1来削弱P1的沉默抑制子活性,从而提高甘蔗对SCSMV的抗性。
黄佳艳, 冯小艳, 沈林波, 王文治, 胡海燕, 张树珍. 甘蔗ShPR10基因的克隆及其编码蛋白与甘蔗线条花叶病毒P1蛋白的互作研究[J]. 生物技术通报, 2023, 39(10): 163-174.
HUANG Jia-yan, FENG Xiao-yan, SHEN Lin-bo, WANG Wen-zhi, HU Hai-yan, ZHANG Shu-zhen. Cloning of Sugarcane ShPR10 Gene and Study on the Interaction Between ShPR10 Protein and P1 Protein Encoded by Sugarcane Streak Mosaic Virus[J]. Biotechnology Bulletin, 2023, 39(10): 163-174.
引物名称 Primer name | 引物序列 Primer sequence(5'-3') | 引物用途 Purpose of primer |
---|---|---|
ShPR10-F | ATGGGTTGGCGTTGGCACGA | 基因克隆Gene cloning |
ShPR10-R | TTACACATCTGAAATCTTGC | |
GFP-p-F | AACACGGGGGACTTTGCAACATGGTGAGCAAGGGCGAGGAG | 亚细胞定位载体构建 Vector construction for subcellular localization |
GFP-p-R | GCCAACCCATGTACAGCTCGTCCATGCCGTG | |
ShPR10-p-F | CGAGCTGTACATGGGTTGGCGTTGGCACGAC | |
ShPR10-p-R | TGAAGACAGAGCTAGTTACATTACACATCTGAAATCTTGCTCCTGAATTCTGAG | |
ShPR10-JT-F | AGTGGTCTCTGTCCAGTCCTATGGGTTGGCGTTGGCACGA | Y2H、BiFC和植物表达载体构建 Vector construction for Y2H, BiFC and plant expression |
ShPR10-JT-R | GGTCTCAGCAGACCACAAGTTTACACATCTGAAATCTTGC | Y2H和植物表达载体构建 Vector construction for Y2H and plant expression |
ShPR10-JT-R1 | GGTCTCAGCAGACCACAAGTCACATCTGAAATCTTGCTCCTG | BiFC载体构建Vector construction for BiFC |
P1-JT-F | AGTGGTCTCTGTCCAGTCCTATGGCTACTATCACTAAGAAGC | BiFC和植物表达载体构建 Vector construction for BiFC and plant expression |
P1-JT-R | GGTCTCAGCAGACCACAAGTGTAAAATACTAAATCTTCACAGC | BiFC载体构建Vector construction for BiFC |
P1-JT-R1 | GGTCTCAGCAGACCACAAGTTCAGTAAAATACTAAATCTTCAC | 植物表达载体构建Vector construction for plant expression |
表1 本研究使用的引物
Table 1 Primers used in this study
引物名称 Primer name | 引物序列 Primer sequence(5'-3') | 引物用途 Purpose of primer |
---|---|---|
ShPR10-F | ATGGGTTGGCGTTGGCACGA | 基因克隆Gene cloning |
ShPR10-R | TTACACATCTGAAATCTTGC | |
GFP-p-F | AACACGGGGGACTTTGCAACATGGTGAGCAAGGGCGAGGAG | 亚细胞定位载体构建 Vector construction for subcellular localization |
GFP-p-R | GCCAACCCATGTACAGCTCGTCCATGCCGTG | |
ShPR10-p-F | CGAGCTGTACATGGGTTGGCGTTGGCACGAC | |
ShPR10-p-R | TGAAGACAGAGCTAGTTACATTACACATCTGAAATCTTGCTCCTGAATTCTGAG | |
ShPR10-JT-F | AGTGGTCTCTGTCCAGTCCTATGGGTTGGCGTTGGCACGA | Y2H、BiFC和植物表达载体构建 Vector construction for Y2H, BiFC and plant expression |
ShPR10-JT-R | GGTCTCAGCAGACCACAAGTTTACACATCTGAAATCTTGC | Y2H和植物表达载体构建 Vector construction for Y2H and plant expression |
ShPR10-JT-R1 | GGTCTCAGCAGACCACAAGTCACATCTGAAATCTTGCTCCTG | BiFC载体构建Vector construction for BiFC |
P1-JT-F | AGTGGTCTCTGTCCAGTCCTATGGCTACTATCACTAAGAAGC | BiFC和植物表达载体构建 Vector construction for BiFC and plant expression |
P1-JT-R | GGTCTCAGCAGACCACAAGTGTAAAATACTAAATCTTCACAGC | BiFC载体构建Vector construction for BiFC |
P1-JT-R1 | GGTCTCAGCAGACCACAAGTTCAGTAAAATACTAAATCTTCAC | 植物表达载体构建Vector construction for plant expression |
图1 ShPR10基因克隆结果 A:ShPR10基因扩增产物,M表示DL2000 DNA marker;B:ShPR10基因的核苷酸序列及其推导的氨基酸序列,P-loop基序用黑色下划线标记
Fig. 1 Cloning results of ShPR10 gene A: Amplification product of ShPR10 gene, M represents DL2000 DNA marker. B: Nucleotide acid sequence and deduced amino acid sequence of ShPR10 gene, P-loop motif is marked with black underline
图2 ShPR10蛋白二级结构预测 蓝色为α-螺旋;红色为延伸链;绿色为β-转角;紫色为无规则卷曲
Fig. 2 Secondary structure prediction of ShPR10 protein The blue is α-helix. Red is extended-strand. Green is β-turn. Purple is random coil
图5 甘蔗ShPR10与其他物种PR10的氨基酸序列比对
Fig. 5 Amino acid sequence alignment between ShPR10 protein from sugarcane and PR10 from other species LpPR10: XP_051226795.1; LrPR10: XP_039849257.1; ObPR10: XP_040382970.1; OgPR10: XP_052140876.1; PvPR10: XP_039810901.1; TaPR10: XP_044357998.1; TdPR10: XP_037414265.1; TuPR10: XP_048564659.1; ZmPR10: NP_001152669.1
图10 ShPR10对SCSMV P1沉默抑制子活性的影响 A:携带不同质粒的3种农杆菌混合注射后烟草叶片中的荧光表达情况,GFP表示pCam3304-35S-GFP质粒,HA-ShPR10表示pNC-Cam33HN-ShPR10质粒,Flag-P1表示pNC-Cam33FN-P1质粒,HA表示pNC-Cam33HN空质粒,Flag表示pNC-Cam33FN空质粒;B:Western blot检测烟草叶片注射区域的蛋白水平,图片上方表示的质粒组合同图A,HA抗体、Flag抗体和GFP抗体分别用来检测ShPR10、P1和GFP的蛋白水平,考马斯亮蓝(CBB)染色的Rubisco大亚基作为上样量对照,误差代表3次重复实验的标准差
Fig. 10 Effect of ShPR10 on the activity of SCSMV P1 silencing suppressor A: Fluorescence expression in N. benthamiana leaves after co-injection of three A. tumefaciens cultures carrying different plasmids. GFP represents the pCam3304-35S-GFP plasmid, HA-ShPR10 represents the pNC-Cam33HN-ShPR10 plasmid, Flag-P1 represents the pNC-Cam33FN-P1 plasmid, HA represents the pNC-Cam33HN empty plasmid, and Flag represents the pNC-Cam33FN empty plasmid. B: The protein levels in the injection areas of N. benthamiana leaves were detected by Western blot. The plasmid combinations shown at the top of the figure were the same as that in Figure A. Levels of ShPR10, P1, and GFP proteins were confirmed with HA, Flag, and GFP antibodies, respectively. The large subunit of Rubisco stained with Coomassie brilliant blue(CBB)was used as a loading control. The error indicates the standard deviation of three repeated experiments
[1] | 程鹏, 姜良宇, 靳立梅, 等. 植物病程相关蛋白PR10研究进展[J]. 大豆科学, 2013, 32(3): 415-419. |
Cheng P, Jiang LY, Jin LM, et al. Advances on class 10 pathogenesis-related proteins[J]. Soybean Sci, 2013, 32(3): 415-419. | |
[2] |
Agarwal P, Agarwal PK. Pathogenesis related-10 proteins are small, structurally similar but with diverse role in stress signaling[J]. Mol Biol Rep, 2014, 41(2): 599-611.
doi: 10.1007/s11033-013-2897-4 pmid: 24343423 |
[3] | 卢一鹏, 李伟, 孙楠, 等. 植物病程相关蛋白PR10结构、功能及表达调控的研究进展[J]. 湖北农业科学, 2016, 55(2): 273-279, 284. |
Lu YP, Li W, Sun N, et al. Research progress of structure, function and expression regulation of plant pathogensis-related protein PR10[J]. Hubei Agric Sci, 2016, 55(2): 273-279, 284. | |
[4] |
Park CJ, Kim KJ, Shin R, et al. Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway[J]. Plant J, 2004, 37(2): 186-198.
doi: 10.1046/j.1365-313X.2003.01951.x URL |
[5] | 张玉, 张增林, 蒋彩虹, 等. 烟草病程相关蛋白NtPR10基因克隆与表达分析[J]. 中国烟草科学, 2017, 38(3): 1-7. |
Zhang Y, Zhang ZL, Jiang CH, et al. Cloning and expression analysis of a pathogenesis related protein gene nt NtPR10 in tobacco(Nicotiana tabacum)[J]. Chin Tob Sci, 2017, 38(3): 1-7. | |
[6] | 张响玲, 张延龙, 牛立新, 等. 岷江百合中黄瓜花叶病毒诱导的LrPR10的克隆及表达分析[J]. 园艺学报, 2014, 41(6): 1218-1226. |
Zhang XL, Zhang YL, Niu LX, et al. Cloning and expression analysis of LrPR10 gene from Lilium regale induced by cucumber mosaic virus[J]. Acta Hortic Sin, 2014, 41(6): 1218-1226. | |
[7] | 李科. 基于RNAseq解析烟草曲茎病毒及其伴随卫星对本氏烟光合作用的影响及抗病基因的响应[D]. 重庆: 西南大学, 2018. |
Li K. The influence of tobacco curly shoot virus and its Betasatellite on photosynthesis of Nicotiana benthamiana and responses of resistance genes based on RNAseq[D]. Chongqing: Southwest University, 2018. | |
[8] | 翁卓, 黄寒. 中国制糖产业竞争力对比与政策建议——基于对巴西、印度、泰国考察的比较[J]. 甘蔗糖业, 2015(4): 65-72. |
Weng Z, Huang H. Comparative analysis on China's sugar industry competitiveness: based on the comparison of Brazil, India and Thailand sugar industry[J]. Sugarcane Canesugar, 2015(4): 65-72. | |
[9] | 刘晓雪, 王新超. 2017/18榨季中国食糖生产形势分析与2018/19榨季展望[J]. 农业展望, 2018, 14(11): 40-46. |
Liu XX, Wang XC. Domestic sugar production situation in 2017/18 crushing season and its prospect for 2018/19 crushing season[J]. Agric Outlook, 2018, 14(11): 40-46. | |
[10] | 邹程, 商贺阳, 段真珍, 等. 甘蔗花叶病及其防控策略研究进展[J]. 安徽农业科学, 2022, 50(5): 5-7, 11. |
Zou C, Shang HY, Duan ZZ, et al. Research advance of sugarcane mosaic and its prevention strategy[J]. J Anhui Agric Sci, 2022, 50(5): 5-7, 11. | |
[11] |
冯小艳, 王文治, 沈林波, 等. 甘蔗线条花叶病毒研究进展[J]. 生物技术通报, 2017, 33(7): 22-28.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0084 |
Feng XY, Wang WZ, Shen LB, et al. Research advances on sugarcane streak mosaic virus[J]. Biotechnol Bull, 2017, 33(7): 22-28. | |
[12] |
Liang SS, Alabi OJ, Damaj MB, et al. Genomic variability and molecular evolution of Asian isolates of sugarcane streak mosaic virus[J]. Arch Virol, 2016, 161(6): 1493-1503.
doi: 10.1007/s00705-016-2810-2 URL |
[13] |
Feng XY, Shen LB, Wang WZ, et al. Reverse transcription-recombinase polymerase amplification assay for the detection of sugarcane streak mosaic virus in sugarcane[J]. Sugar Tech, 2019, 21(4): 645-652.
doi: 10.1007/s12355-018-0675-2 |
[14] |
Tatineni S, Qu F, Li RH, et al. Triticum mosaic poacevirus enlists P1 rather than HC-Pro to suppress RNA silencing-mediated host defense[J]. Virology, 2012, 433(1): 104-115.
doi: 10.1016/j.virol.2012.07.016 URL |
[15] | 冯小艳, 王俊刚, 王文治, 等. 甘蔗线条花叶病毒RNA沉默抑制子的寄主互作蛋白鉴定[J]. 热带作物学报, 2022, 43(6): 1231-1239. |
Feng XY, Wang JG, Wang WZ, et al. Identification of host proteins interacting with RNA silencing suppressor of sugarcane streak mosaic virus[J]. Chin J Trop Crops, 2022, 43(6): 1231-1239. | |
[16] | 冯小艳, 王俊刚, 赵婷婷, 等. 甘蔗液泡膜二羧酸转运蛋白基因ScTDT克隆与表达分析[J]. 南方农业学报, 2021, 52(2): 325-331. |
Feng XY, Wang JG, Zhao TT, et al. Cloning and expression analysis of tonoplast dicarboxylate transporter gene ScTDT in sugarcane[J]. J South Agric, 2021, 52(2): 325-331. | |
[17] | 尹梦莹, 蔚亚楠, 杜光辉, 等. 蒜芥茄SsWRKY1基因克隆及黄萎病病原菌胁迫下表达分析[J]. 南方农业学报, 2022, 53(4): 1000-1010. |
Yin MY, Yu YN, Du GH, et al. Cloning and expression analysis of SsWRKY1 gene in Solanum sisymbriifolium under stress of verticillium wilt disease[J]. J South Agric, 2022, 53(4): 1000-1010. | |
[18] | 朱海龙, 程光远, 彭磊, 等. 甘蔗条纹花叶病毒P3蛋白与甘蔗Rubisco大亚基互作的研究[J]. 西北植物学报, 2014, 34(4): 676-681. |
Zhu HL, Cheng GY, Peng L, et al. Interaction between sugarcane streak mosaic virus P3 and rubisco large subunit from sugarcane[J]. Acta Bot Boreali Occidentalia Sin, 2014, 34(4): 676-681. | |
[19] |
Chen L, Yan ZL, Xia ZH, et al. A violaxanthin deepoxidase interacts with a viral suppressor of RNA silencing to inhibit virus amplification[J]. Plant Physiol, 2017, 175(4): 1774-1794.
doi: 10.1104/pp.17.00638 pmid: 29021224 |
[20] |
Franz-Oberdorf K, Langer A, Strasser R, et al. Physical interaction between the strawberry allergen Fra a 1 and an associated partner FaAP: interaction of Fra a 1 proteins and FaAP[J]. Proteins, 2017, 85(10): 1891-1901.
doi: 10.1002/prot.v85.10 URL |
[21] |
Besbes F, Franz-Oberdorf K, Schwab W. Phosphorylation-dependent ribonuclease activity of Fra a 1 proteins[J]. J Plant Physiol, 2019, 233: 1-11.
doi: 10.1016/j.jplph.2018.12.002 URL |
[22] |
He MY, Xu Y, Cao JL, et al. Subcellular localization and functional analyses of a PR10 protein gene from Vitis pseudoreticulata in response to Plasmopara viticola infection[J]. Protoplasma, 2013, 250(1): 129-140.
doi: 10.1007/s00709-012-0384-8 URL |
[23] |
Xie YR, Chen ZY, Brown RL, et al. Expression and functional characterization of two pathogenesis-related protein 10 genes from Zea mays[J]. J Plant Physiol, 2010, 167(2): 121-130.
doi: 10.1016/j.jplph.2009.07.004 URL |
[24] |
Chadha P, Das RH. A pathogenesis related protein, AhPR10 from peanut: an insight of its mode of antifungal activity[J]. Planta, 2006, 225(1): 213-222.
pmid: 16832688 |
[25] |
Liu XJ, Huang BB, Lin J, et al. A novel pathogenesis-related protein(SsPR10)from Solanum surattense with ribonucleolytic and antimicrobial activity is stress- and pathogen-inducible[J]. J Plant Physiol, 2006, 163(5): 546-556.
doi: 10.1016/j.jplph.2005.04.031 URL |
[26] |
Agarwal P, Bhatt V, Singh R, et al. Pathogenesis-related gene, JcPR-10a from Jatropha curcas exhibit RNase and antifungal activity[J]. Mol Biotechnol, 2013, 54(2): 412-425.
doi: 10.1007/s12033-012-9579-7 URL |
[27] |
Pungartnik C, da Silva AC, de Melo SA, et al. High-affinity copper transport and Snq2 export permease of Saccharomyces cerevisiae modulate cytotoxicity of PR-10 from Theobroma cacao[J]. Mol Plant Microbe Interact, 2009, 22(1): 39-51.
doi: 10.1094/MPMI-22-1-0039 URL |
[28] |
Choi DS, Hwang IS, Hwang BK. Requirement of the cytosolic interaction between pathogenesis-related protein10 and leucine-rich repeat protein1 for cell death and defense signaling in pepper[J]. Plant Cell, 2012, 24(4): 1675-1690.
doi: 10.1105/tpc.112.095869 URL |
[29] | 王俊. 大豆根瘤固氮相关基因GmPR10.1和GmACP1的功能研究[D]. 北京: 中国农业科学院, 2012. |
Wang J. Functional characterization of GmPR10.1 and GmACP1 during soybean(Glycine max)nodulation[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. | |
[30] | 张弛, 王宇婷, 顾咏梅, 等. 杨树PR10基因应答杨树叶枯病与非生物胁迫表达[J]. 东北林业大学学报, 2021, 49(12): 103-107, 131. |
Zhang C, Wang YT, Gu YM, et al. Expression of PR10 gene in response to Alternaria alternata and abiotic stress in poplar[J]. J Northeast For Univ, 2021, 49(12): 103-107, 131. | |
[31] | Zhang RP, Wang YC, Liu GF, et al. Cloning and characterization of a pathogenesis-related gene(ThPR10)from Tamarix hispida[J]. Acta Biol Cracoviensia Ser Bot, 2010, 52(2): 17-25. |
[32] |
Lee OR, Kim YJ, Balusamy SRD, et al. Expression of the ginseng PgPR10-1 in Arabidopsis confers resistance against fungal and bacterial infection[J]. Gene, 2012, 506(1): 85-92.
doi: 10.1016/j.gene.2012.06.039 URL |
[33] |
Islam MA, Sturrock RN, Holmes TA, et al. Ultrastructural studies of Phellinus sulphurascens infection of Douglas-fir roots and immunolocalization of host pathogenesis-related proteins[J]. Mycol Res, 2009, 113(6-7): 700-712.
doi: 10.1016/j.mycres.2009.02.006 URL |
[34] |
Lee EJ, Facchini P. Norcoclaurine synthase is a member of the pathogenesis-related 10/Bet v1 protein family[J]. Plant Cell, 2010, 22(10): 3489-3503.
doi: 10.1105/tpc.110.077958 URL |
[35] |
Wang CG, Wang CN, Zou JZ, et al. Epigenetics in the plant-virus interaction[J]. Plant Cell Rep, 2019, 38(9): 1031-1038.
doi: 10.1007/s00299-019-02414-0 pmid: 31065780 |
[36] |
Wang F, Zhao X, Dong Q, et al. Characterization of an RNA silencing suppressor encoded by maize yellow dwarf virus-RMV2[J]. Virus Genes, 2018, 54(4): 570-577.
doi: 10.1007/s11262-018-1565-0 pmid: 29752617 |
[37] |
Nakahara KS, Masuta C, Yamada S, et al. Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors[J]. Proc Natl Acad Sci USA, 2012, 109(25): 10113-10118.
doi: 10.1073/pnas.1201628109 pmid: 22665793 |
[38] | 杨作坤. 柑橘衰退病毒与寄主蛋白互作的生物学功能及其vsiRNA靶向寄主基因的鉴定[D]. 武汉: 华中农业大学, 2020. |
Yang ZK. Study on biological functions of protein interactions between Citrus tristeza virus and its host and identification of host genes targeted by the virus derived siRNA[D]. Wuhan: Huazhong Agricultural University, 2020. | |
[39] | Csorba T, Burgyán J. Antiviral silencing and suppression of gene silencing in plants[M]//Current Research Topics in Plant Virology. Cham: Springer, 2016: 1-33. |
[1] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[2] | 李心怡, 姜春秀, 薛丽, 蒋洪涛, 姚伟, 邓祖湖, 张木清, 余凡. 多荧光标记引物增强甘蔗染色体寡聚核苷酸探针杂交信号[J]. 生物技术通报, 2023, 39(5): 103-111. |
[3] | 高小宁, 刘睿, 吴自林, 吴嘉云. 宿根矮化病抗感甘蔗品种茎部内生真菌和细菌群落特征分析[J]. 生物技术通报, 2022, 38(6): 166-173. |
[4] | 赵婷婷, 王俊刚, 王文治, 冯翠莲, 冯小艳, 张树珍. 甘蔗单糖转运蛋白基因ShSTP7序列分析及组织表达特征测定[J]. 生物技术通报, 2022, 38(4): 72-78. |
[5] | 张靖, 尤垂淮, 曹月, 崔天真, 杨靖涛, 罗俊. 甘蔗根际微生态及其与黑穗病防治之间的关系[J]. 生物技术通报, 2022, 38(11): 21-31. |
[6] | 冯翠莲, 万玥, 王俊刚, 冯小艳, 赵婷婷, 王文治, 沈林波, 张树珍. 转Cry1Ac-2A-gna基因甘蔗BCG-17转化体特异性检测方法的建立[J]. 生物技术通报, 2021, 37(5): 248-258. |
[7] | 冯翠莲, 张树珍. 抗虫转基因甘蔗的培育及其抗性丧失的防控策略[J]. 生物技术通报, 2020, 36(7): 209-219. |
[8] | 甘崇琨, 周慧文, 陈荣发, 范业赓, 丘立杭, 黄杏, 李杨瑞, 卢星高, 吴建明. 化学调控在甘蔗生产上的研究应用[J]. 生物技术通报, 2019, 35(2): 163-170. |
[9] | 张保青, 邵敏, 黄玉新, 黄杏, 宋修鹏, 陈虎, 王盛, 谭秦亮, 杨丽涛, 李杨瑞. 甘蔗抗坏血酸过氧化物酶基因ScAPX1的克隆和表达分析[J]. 生物技术通报, 2019, 35(12): 31-37. |
[10] | 郭莺 ,汪文华 ,刘黎卿 ,胡敏. 甘蔗宿根矮化病多克隆抗体和免疫磁珠的制备[J]. 生物技术通报, 2018, 34(6): 79-83. |
[11] | 王羽晗, 李子豪, 李世彪, 陈驰航, 王瑜麟, 张旸. 植物抗冻蛋白研究进展[J]. 生物技术通报, 2018, 34(12): 10-20. |
[12] | 唐仕云, 杨丽涛, 李杨瑞. 低温胁迫下不同甘蔗品种的转录组比较分析[J]. 生物技术通报, 2018, 34(12): 116-124. |
[13] | 赵婷婷, 王俊刚, 杨本鹏, 沈林波, 冯小艳, 王文治, 冯翠莲, 熊国如, 张树珍. 甘蔗脱毒健康种苗中蔗糖转运蛋白基因的差异表达分析[J]. 生物技术通报, 2018, 34(12): 125-131. |
[14] | 冯小艳,王文治,沈林波,冯翠莲,张树珍. 甘蔗线条花叶病毒研究进展[J]. 生物技术通报, 2017, 33(7): 22-28. |
[15] | 李佳慧,袁丹,陆建明,杨丽涛,李杨瑞,邢永秀. 氮肥对甘蔗叶片内生固氮菌nifH基因表达的影响[J]. 生物技术通报, 2017, 33(7): 100-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||