生物技术通报 ›› 2023, Vol. 39 ›› Issue (12): 229-236.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0152
收稿日期:
2023-02-22
出版日期:
2023-12-26
发布日期:
2024-01-11
通讯作者:
张霞,女,博士,副研究员,研究方向:花生病害的综合防治;E-mail: zhangxia2259@126.com作者简介:
李莹,女,博士,助理研究员,研究方向:花生病害的综合防治;E-mail: li1989ying0921@163.com
基金资助:
LI Ying(), SONG Xin-ying, HE Kang, GUO Zhi-qing, YU Jing, ZHANG Xia()
Received:
2023-02-22
Published:
2023-12-26
Online:
2024-01-11
摘要:
为获得高效拮抗花生病害的生防微生物,以花生冠腐病菌为指示菌,采用稀释涂布平板法和平板对峙法,从山东莱西采集的花生连作田的病、健株根际土壤样品中筛选到1株高效生防菌株,编号为ZHX-7。结合形态学特征和16S rDNA、gyrB序列分析,确定ZHX-7为贝莱斯芽孢杆菌(Bacillus velezensis)。ZHX-7的菌悬液、无菌发酵液和挥发性气体对花生白绢病菌、基腐病菌、网斑病菌和轮斑病菌菌丝生长的抑制均达到极显著的水平,平板对峙试验表明ZHX-7的菌悬液对花生白绢病菌、基腐病菌、网斑病菌和轮斑病菌的抑菌率分别为64.40%、70.37%、77.43%和65.32%。在以ZHX-7无菌发酵液稀释10倍的PDA培养基上,花生白绢病菌、基腐病菌、网斑病菌和轮斑病菌菌丝的生长抑制率分别为67.81%、52.16%、23.52%和69.93%。双皿对扣试验表明ZHX-7的挥发性气体对花生白绢病菌、基腐病菌、网斑病菌和轮斑病菌的抑菌率分别为86.82%、35.40%、81.70%和44.19%。ZHX-7可产生蛋白酶、纤维素酶和淀粉酶等次级代谢产物;此外,在温室盆栽条件下,ZHX-7有菌发酵液明显促进了花生的生长,同对照相比,鲜质量、干质量分别增加31.24%和26.47%,并且ZHX-7有菌发酵液明显提高了花生对白绢病的抗性,防效达到51.76%。综上所述,本研究筛选获得的一株贝莱斯芽孢杆菌ZHX-7,能够抑制多种花生病原真菌,同时促进花生生长,是一株具有宽广拮抗谱的多功能菌株,具有较好的生防应用潜力。
李莹, 宋新颖, 何康, 郭志青, 于静, 张霞. 贝莱斯芽孢杆菌ZHX-7的分离鉴定及抑菌促生效果[J]. 生物技术通报, 2023, 39(12): 229-236.
LI Ying, SONG Xin-ying, HE Kang, GUO Zhi-qing, YU Jing, ZHANG Xia. Isolation and Identification of Bacillus velezensis ZHX-7 and Its Antibacterial and Growth-promoting Effects[J]. Biotechnology Bulletin, 2023, 39(12): 229-236.
图3 ZHX-7菌悬液对4种病原真菌拮抗活性的测定 A:ZHX-7对4种花生病原菌的拮抗效果图;B:病原菌的菌落生长情况统计;C:ZHX-7对4种花生病原菌的抑菌率统计。**在0.01水平差异极显著。下同
Fig. 3 Determination of antagonistic activity of ZHX-7 bacterial suspension against four pathogens A: Antagonistic effect of ZHX-7 on four peanut pathogens. B: Statistics of colony growth of pathogens. C: Statistics of inhibition rate of ZHX-7 against four peanut pathogens. ** indicates extremely significant differences at 0.01 level. The same below
处理Treatment | 鲜质量Fresh mass/g | 干质量Dry mass/g | 死亡率Mortality/% | 病情指数Disease index | 防效Efficacy/% |
---|---|---|---|---|---|
CK | 10.47±0.74 A | 1.48±0.10 A | 56.67±5.77 A | 85.42±3.15 A | / |
ZHX-7 | 13.74±0.96 B | 1.88±0.11 B | 18.33±2.89 B | 41.25±3.31 B | 51.76±2.13 |
表1 ZHX-7对花生生长及白绢病的防治效果
Table1 Control effect of ZHX-7 on peanut growth and peanut Sclerotium blight
处理Treatment | 鲜质量Fresh mass/g | 干质量Dry mass/g | 死亡率Mortality/% | 病情指数Disease index | 防效Efficacy/% |
---|---|---|---|---|---|
CK | 10.47±0.74 A | 1.48±0.10 A | 56.67±5.77 A | 85.42±3.15 A | / |
ZHX-7 | 13.74±0.96 B | 1.88±0.11 B | 18.33±2.89 B | 41.25±3.31 B | 51.76±2.13 |
[1] | 张霞, 许曼琳, 郭志青, 等. 暹罗芽孢杆菌ZHX-10的分离鉴定及其对花生白绢病的生防效果[J]. 中国油料作物学报, 2020, 42(4): 674-680. |
Zhang X, Xu ML, Guo ZQ, et al. Isolation and identification of Bacillus sinensis ZHX-10 and analysis on its biological control activities against Sclerotium rolfsii[J]. Chin J Oil Crop Sci, 2020, 42(4): 674-680. | |
[2] |
Bera SK, Kamdar JH, Kasundra SV, et al. Steady expression of high oleic acid in peanut bred by marker-assisted backcrossing for fatty acid desaturase mutant alleles and its effect on seed germination along with other seedling traits[J]. PLoS One, 2019, 14(12): e0226252.
doi: 10.1371/journal.pone.0226252 URL |
[3] |
Wang SY, Li LN, Fu LY, et al. Development and characterization of new allohexaploid resistant to web blotch in peanut[J]. J Integr Agric, 2021, 20(1): 55-64.
doi: 10.1016/S2095-3119(20)63228-2 URL |
[4] |
Fan PM, Song WD, Kang YP, et al. Phenotypic identification of peanut germplasm for resistance to southern stem rot[J]. Oil Crop Sci, 2020, 5(4): 174-179.
doi: 10.1016/j.ocsci.2020.12.001 URL |
[5] |
Xu ML, Zhang X, Guo ZQ, et al. First report of peanut foot rot caused by Fusarium neocosmosporiellum in Shandong Province, China[J]. J Plant Pathol, 2021, 103(3): 1059-1060.
doi: 10.1007/s42161-021-00867-5 |
[6] |
Zhang X, Xu ML, Wu JX, et al. Draft genome sequence of Phoma arachidicola Wb2 causing peanut web blotch in China[J]. Curr Microbiol, 2019, 76(2): 200-206.
doi: 10.1007/s00284-018-1612-z pmid: 30535834 |
[7] |
Zhang X, Xu ML, Yu J, et al. First report of Alternaria alternata causing peanut grey blight in China[J]. J Plant Pathol, 2021, 103(2): 677.
doi: 10.1007/s42161-021-00766-9 |
[8] | Andrés JA, Pastor NA, Ganuza M, et al. Biopesticides: an eco-friendly approach for the control of soilborne pathogens in peanut[M]// SinghD, SinghH, PrabhaR. Microbial Inoculants in Sustainable Agricultural Productivity. New Delhi: Springer, 2016: 161-179. |
[9] |
Subandar I, Hakim L, Suliansyah I, et al. Identification of antagonistic bacteria against peanut stem rot disease(Sclerotium rolfsii Sacc.) on the peatland of Kuala Pesisir-Nagan Raya, Indonesia[J]. IOP Conf Ser: Earth Environ Sci, 2021, 637(1): 012063.
doi: 10.1088/1755-1315/637/1/012063 |
[10] |
Neelipally RTKR, Anoruo AO, Nelson S. Effect of co-inoculation of Bradyrhizobium and Trichoderma on growth, development, and yield of Arachis hypogaea L.(peanut)[J]. Agronomy, 2020, 10(9): 1415.
doi: 10.3390/agronomy10091415 URL |
[11] |
Guo ZQ, Zhang X, Wu JX, et al. In vitro inhibitory effect of the bacterium Serratia marcescens on Fusarium proliferatum growth and fumonisins production[J]. Biol Contr, 2020, 143: 104188.
doi: 10.1016/j.biocontrol.2020.104188 URL |
[12] | Illa C, Pérez AA, Torassa M, et al. Effect of biocontrol and promotion of peanut growth by inoculating Trichoderma harzianum and Bacillus subtilis under controlled conditions and field[J]. Rev Mex De Fitopatología Mex J Phytopathol, 2019, 38(1): 119-131. |
[13] |
Cook RJ. Making greater use of introduced microorganisms for biological control of plant pathogens[J]. Annu Rev Phytopathol, 1993, 31: 53-80.
pmid: 18643761 |
[14] | 董国菊. 荧光假单胞菌Pseudomonas fluorescens P-72-10菌株对烟草黑胫病的生防机理研究[D]. 重庆: 西南大学, 2012. |
Dong GJ. Biocontrol mechanisms of Pseudomonas fluorescens strain P-72-10 on black shank disease of tobacco[D]. Chongqing: Southwest University, 2012. | |
[15] | 张霞, 许曼琳, 于静, 等. 暹罗芽孢杆菌ZHX-10对花生冠腐病的生防效果[J]. 花生学报, 2020, 49(4): 52-56. |
Zhang X, Xu ML, Yu J, et al. Biological control of Bacillus sinensis ZHX-10 on peanut crown rot[J]. J Peanut Sci, 2020, 49(4): 52-56. | |
[16] | 邹秋霞, 任佐华, 高诗涵, 等. 枯草芽胞杆菌YN145分离鉴定及抑菌活性[J]. 中国生物防治学报, 2017, 33(3): 421-426. |
Zou QX, Ren ZH, Gao SH, et al. Isolation and identification of Bacillus subtilis YN145 against Magnaporthe oryzae and its antimicrobial activities[J]. Chin J Biol Contr, 2017, 33(3): 421-426. | |
[17] |
Gao ZF, Zhang BJ, Liu HP, et al. Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea[J]. Biol Contr, 2017, 105: 27-39.
doi: 10.1016/j.biocontrol.2016.11.007 URL |
[18] |
Raymaekers K, Ponet L, Holtappels D, et al. Screening for novel biocontrol agents applicable in plant disease management - A review[J]. Biol Contr, 2020, 144: 104240.
doi: 10.1016/j.biocontrol.2020.104240 URL |
[19] | 沙月霞. 防治稻瘟病芽胞杆菌的筛选及生防机制研究[D]. 北京: 中国农业大学, 2016. |
Sha YX. Screening of Bacillus strains against rice blast and research of biocontrol mechanism[D]. Beijing: China Agricultural University, 2016. | |
[20] |
Liu Y, Teng K, Wang T, et al. Antimicrobial Bacillus velezensis HC6: production of three kinds of lipopeptides and biocontrol potential in maize[J]. J Appl Microbiol, 2020, 128(1): 242-254.
doi: 10.1111/jam.14459 pmid: 31559664 |
[21] |
Chen L, Wu YD, Chong XY, et al. Seed-borne endophytic Bacillus velezensis LHSB1 mediate the biocontrol of peanut stem rot caused by Sclerotium rolfsii[J]. J Appl Microbiol, 2020, 128(3): 803-813.
doi: 10.1111/jam.14508 pmid: 31705716 |
[22] |
Chen L, Shi H, Heng JY, et al. Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2[J]. Microbiol Res, 2019, 218: 41-48.
doi: 10.1016/j.micres.2018.10.002 URL |
[23] |
Abdelkhalek A, Behiry SI, Al-Askar AA. Bacillus velezensis PEA1 inhibits Fusarium oxysporum growth and induces systemic resistance to cucumber mosaic virus[J]. Agronomy, 2020, 10(9): 1312.
doi: 10.3390/agronomy10091312 URL |
[24] |
Chen MC, Wang JP, Liu B, et al. Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides[J]. BMC Microbiol, 2020, 20(1): 160.
doi: 10.1186/s12866-020-01851-2 |
[25] |
Xu ML, Zhang X, Yu J, et al. Biological control of peanut southern blight(Sclerotium rolfsii)by the strain Bacillus pumilus LX11[J]. Biocontrol Sci Technol, 2020, 30(5): 485-489.
doi: 10.1080/09583157.2020.1725441 URL |
[26] |
臧超群, 赵颖, 谢瑾卉, 等. 贝莱斯芽胞杆菌BP-1筛选、鉴定及其对花生网斑病的田间防效评价[J]. 中国生物防治学报, 2021, 37(2): 259-265.
doi: 10.16409/j.cnki.2095-039x.2021.02.004 |
Zang CQ, Zhao Y, Xie JH, et al. Screening and identification of Bacillus velezensis strain BP-1 and the field control efficiency against peanut web blotch[J]. Chin J Biol Contr, 2021, 37(2): 259-265. | |
[27] |
缪伏荣, 陈鑫珠, 邱华玲, 等. 一株贝莱斯芽孢杆菌的分离与鉴定[J]. 中国农学通报, 2021, 37(18): 109-116.
doi: 10.11924/j.issn.1000-6850.casb2020-0460 |
Miao FR, Chen XZ, Qiu HL, et al. A strain of Bacillus velezensis: isolation and identification[J]. Chin Agric Sci Bull, 2021, 37(18): 109-116. | |
[28] |
Toral L, Rodríguez M, Béjar V, et al. Crop protection against Botrytis cinerea by rhizhosphere biological control agent Bacillus velezensis XT1[J]. Microorganisms, 2020, 8(7): 992.
doi: 10.3390/microorganisms8070992 URL |
[29] |
Maheswari NU, Sirchabai TP. Effect of Trichoderma species on Pythium aphanidermatum causing rhizome rot of turmeric[J]. Biosci, Biotechnol Res Asia, 2011, 8(2): 723-728.
doi: 10.13005/bbra/925 URL |
[1] | 苗永美, 苗翠苹, 于庆才. 枯草芽孢杆菌BBs-27发酵液性质及脂肽对黄色镰刀菌的抑菌作用[J]. 生物技术通报, 2023, 39(9): 255-267. |
[2] | 褚睿, 李昭轩, 张学青, 杨东亚, 曹行行, 张雪艳. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271. |
[3] | 饶紫环, 谢志雄. 一株Olivibacter jilunii 纤维素降解菌株的分离鉴定与降解能力分析[J]. 生物技术通报, 2023, 39(8): 283-290. |
[4] | 马俊秀, 吴皓琼, 姜威, 闫更轩, 胡基华, 张淑梅. 蔬菜软腐病菌广谱拮抗细菌菌株筛选鉴定及防效研究[J]. 生物技术通报, 2023, 39(7): 228-240. |
[5] | 游子娟, 陈汉林, 邓辅财. 鱼皮生物活性肽的提取及功能活性研究进展[J]. 生物技术通报, 2023, 39(7): 91-104. |
[6] | 任沛东, 彭健玲, 刘圣航, 姚姿婷, 朱桂宁, 陆光涛, 李瑞芳. 沙福芽孢杆菌GX-H6的分离鉴定及对水稻细菌性条斑病的防病效果[J]. 生物技术通报, 2023, 39(5): 243-253. |
[7] | 车永梅, 郭艳苹, 刘广超, 叶青, 李雅华, 赵方贵, 刘新. 菌株C8和B4的分离鉴定及其耐盐促生效果和机制[J]. 生物技术通报, 2023, 39(5): 276-285. |
[8] | 李善家, 雷雨昕, 孙梦格, 刘海锋, 王兴敏. 种子内生细菌多样性与植物互馈作用研究进展[J]. 生物技术通报, 2023, 39(4): 166-175. |
[9] | 章乐乐, 王冠, 柳凤, 胡汉桥, 任磊. 芒果炭疽病拮抗菌分离、鉴定及生防机制研究[J]. 生物技术通报, 2023, 39(4): 277-287. |
[10] | 易希, 廖红东, 郑井元. 植物内生真菌防治根结线虫研究进展[J]. 生物技术通报, 2023, 39(3): 43-51. |
[11] | 王伟宸, 赵进, 黄薇颐, 郭芯竹, 李婉颖, 张卓. 芽胞杆菌代谢产物防治三种常见植物病原真菌的研究进展[J]. 生物技术通报, 2023, 39(3): 59-68. |
[12] | 王凤婷, 王岩, 孙颖, 崔文婧, 乔凯彬, 潘洪玉, 刘金亮. 耐盐碱土曲霉SYAT-1的分离鉴定及抑制植物病原真菌特性研究[J]. 生物技术通报, 2023, 39(2): 203-210. |
[13] | 杨东亚, 祁瑞雪, 李昭轩, 林薇, 马慧, 张雪艳. 黄瓜茄病镰刀菌拮抗芽孢杆菌的筛选、鉴定及促生效果[J]. 生物技术通报, 2023, 39(2): 211-220. |
[14] | 罗宁, 焦阳, 茆振川, 李惠霞, 谢丙炎. 木霉菌对根结线虫和孢囊线虫防治机理研究进展[J]. 生物技术通报, 2023, 39(2): 35-50. |
[15] | 张林林, 沈虎生, 杨冰, 何梦菡, 朴凤植, 申顺善. 生防细菌HK11-9对黄瓜棒孢叶斑病的防病能力及其鉴定[J]. 生物技术通报, 2023, 39(12): 209-218. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||