生物技术通报 ›› 2024, Vol. 40 ›› Issue (1): 344-352.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0498
焦帅1,2(), 付域泽1, 崔凯1, 张吉贤1, 王杰1, 毕研亮1, 刁其玉1, 张建新2(), 张乃锋1()
收稿日期:
2023-05-26
出版日期:
2024-01-26
发布日期:
2024-02-06
通讯作者:
张建新,男,教授,研究方向:动物营养与饲料科学;E-mail: ypzjx@126.com;作者简介:
焦帅,男,硕士研究生,研究方向:动物营养与饲料科学;E-mail: 1635818839@qq.com
基金资助:
JIAO Shuai1,2(), FU Yu-ze1, CUI Kai1, ZHANG Ji-xian1, WANG Jie1, BI Yan-liang1, DIAO Qi-yu1, ZHANG Jian-xin2(), ZHANG Nai-feng1()
Received:
2023-05-26
Published:
2024-01-26
Online:
2024-02-06
摘要:
【目的】本试验旨在研究短小芽孢杆菌对羔羊生长性能及腹泻、血清指标、结肠组织形态、炎性细胞因子和紧密连接蛋白含量的影响。【方法】选取36只初生重3 kg左右的1日龄萨能奶山羊公羔,随机分为4组(每组9个重复,每重复1只羔羊);每天分别饲喂0(CON组)、1 mL(BP1组)、5 mL(BP5组)、10 mL(BP10组)短小芽孢杆菌菌液,其活菌数为1×108 CFU/mL,试验期14 d。【结果】饲喂短小芽孢杆菌对羔羊末重、平均日增重、平均日采食和料重比均无显著影响(P > 0.05),但均降低了羔羊的粪便评分和腹泻频率(P < 0.05);BP1组血清中谷草转氨酶含量低于对照组(P < 0.05),二胺氧化酶含量低于对照组和BP5组(P < 0.05),与对照组相比,其它三组均降低了D-乳酸含量(P < 0.05);BP1组增加了结肠肌层厚度(P < 0.05);与对照组相比,BP1组、BP5组和BP10组均降低了IL-1β、IL-6、TNF-α含量(P < 0.05),增加了IL-10、TGF-β、IFN-γ、PPAR-γ的含量以及MUC2、Claudin-1、Claudin-4、Occludin和ZO-1的含量(P < 0.05),而且减少了结肠组织中性粒细胞细胞浸润。【结论】在初生羔羊代乳粉中添加短小芽孢杆菌可以降低羔羊腹泻频率,改善结肠组织形态,缓解炎症反应,增强黏膜屏障功能,但对生长性能无显著影响。
焦帅, 付域泽, 崔凯, 张吉贤, 王杰, 毕研亮, 刁其玉, 张建新, 张乃锋. 短小芽孢杆菌对羔羊肠道炎症和屏障功能的影响[J]. 生物技术通报, 2024, 40(1): 344-352.
JIAO Shuai, FU Yu-ze, CUI Kai, ZHANG Ji-xian, WANG Jie, BI Yan-liang, DIAO Qi-yu, ZHANG Jian-xin, ZHANG Nai-feng. Effects of Bacillus pumilus on the Intestinal Inflammation and Barrier Function of Goat Kids[J]. Biotechnology Bulletin, 2024, 40(1): 344-352.
营养水平Nutrient level | 含量Content |
---|---|
干物质 DM | 95.00% |
粗蛋白质 CP | 22.00% |
粗脂肪 EE | 24.00% |
乳糖 Lactose | 35.00% |
粗灰分 Ash | 9.00% |
粗纤维 CF | 0.20% |
钙 Ga | 0.72% |
磷 P | 0.44% |
赖氨酸 Lys | 1.70% |
氯化钠 NaCl | 1.00% |
维生素A Vitamin A | 25 000 IU/kg |
表1 代乳粉营养水平
Table 1 Nutrient levels of milk replacer
营养水平Nutrient level | 含量Content |
---|---|
干物质 DM | 95.00% |
粗蛋白质 CP | 22.00% |
粗脂肪 EE | 24.00% |
乳糖 Lactose | 35.00% |
粗灰分 Ash | 9.00% |
粗纤维 CF | 0.20% |
钙 Ga | 0.72% |
磷 P | 0.44% |
赖氨酸 Lys | 1.70% |
氯化钠 NaCl | 1.00% |
维生素A Vitamin A | 25 000 IU/kg |
项目 Item | 组别Group | SEM | P值 P-value | |||||
---|---|---|---|---|---|---|---|---|
CON | BP1 | BP5 | BP10 | 处理Treatment | 线性Linear | 二次Quadratic | ||
初重 Initial BW/kg | 2.83 | 2.83 | 3.00 | 2.88 | 0.305 | 0.932 | 0.726 | 0.776 |
末重 Final BW/kg | 4.38 | 4.36 | 4.66 | 4.52 | 0.482 | 0.918 | 0.646 | 0.853 |
平均日增重ADG/g | 111.07 | 109.56 | 118.57 | 116.79 | 19.192 | 0.958 | 0.670 | 0.992 |
平均日采食ADFI/g | 130.25 | 124.14 | 135.74 | 122.45 | 12.039 | 0.679 | 0.759 | 0.676 |
料重比 F/G | 1.19 | 1.17 | 1.29 | 1.19 | 0.173 | 0.897 | 0.853 | 0.753 |
粪便评分 Fecal score | 1.99a | 1.40b | 1.40b | 1.49b | 0.165 | 0.003 | 0.008 | 0.007 |
腹泻频率 Diarrhea frequency/% | 56.25a | 26.79b | 28.72b | 30.50b | 9.378 | 0.012 | 0.017 | 0.026 |
表2 短小芽孢杆菌对羔羊生长性能和腹泻的影响
Table 2 Effects of B. pumilus on the growth performance and diarrhea of goat kids
项目 Item | 组别Group | SEM | P值 P-value | |||||
---|---|---|---|---|---|---|---|---|
CON | BP1 | BP5 | BP10 | 处理Treatment | 线性Linear | 二次Quadratic | ||
初重 Initial BW/kg | 2.83 | 2.83 | 3.00 | 2.88 | 0.305 | 0.932 | 0.726 | 0.776 |
末重 Final BW/kg | 4.38 | 4.36 | 4.66 | 4.52 | 0.482 | 0.918 | 0.646 | 0.853 |
平均日增重ADG/g | 111.07 | 109.56 | 118.57 | 116.79 | 19.192 | 0.958 | 0.670 | 0.992 |
平均日采食ADFI/g | 130.25 | 124.14 | 135.74 | 122.45 | 12.039 | 0.679 | 0.759 | 0.676 |
料重比 F/G | 1.19 | 1.17 | 1.29 | 1.19 | 0.173 | 0.897 | 0.853 | 0.753 |
粪便评分 Fecal score | 1.99a | 1.40b | 1.40b | 1.49b | 0.165 | 0.003 | 0.008 | 0.007 |
腹泻频率 Diarrhea frequency/% | 56.25a | 26.79b | 28.72b | 30.50b | 9.378 | 0.012 | 0.017 | 0.026 |
项目 Item | 组别Group | SEM | P值 P-value | |||||
---|---|---|---|---|---|---|---|---|
CON | BP1 | BP5 | BP10 | 处理Treatment | 线性Linear | 二次Quadratic | ||
谷丙转氨酶ALT/(U·L-1) | 43.51 | 34.26 | 39.07 | 37.78 | 3.531 | 0.104 | 0.281 | 0.127 |
谷草转氨酶AST/((U·L-1) | 77.53a | 63.56b | 69.68ab | 70.85ab | 4.552 | 0.047 | 0.345 | 0.029 |
二胺氧化酶DAO/(U·L-1) | 11.66a | 9.43b | 11.23a | 10.63ab | 0.684 | 0.022 | 0.556 | 0.109 |
D-乳酸 LD/(mmol·L-1) | 8.04a | 6.38b | 6.72b | 6.91b | 0.282 | <0.001 | 0.003 | <0.001 |
表3 短小芽孢杆菌对羔羊血清生化指标的影响
Table 3 Effects of B. pumilus on the serum biochemical indices of goat kids
项目 Item | 组别Group | SEM | P值 P-value | |||||
---|---|---|---|---|---|---|---|---|
CON | BP1 | BP5 | BP10 | 处理Treatment | 线性Linear | 二次Quadratic | ||
谷丙转氨酶ALT/(U·L-1) | 43.51 | 34.26 | 39.07 | 37.78 | 3.531 | 0.104 | 0.281 | 0.127 |
谷草转氨酶AST/((U·L-1) | 77.53a | 63.56b | 69.68ab | 70.85ab | 4.552 | 0.047 | 0.345 | 0.029 |
二胺氧化酶DAO/(U·L-1) | 11.66a | 9.43b | 11.23a | 10.63ab | 0.684 | 0.022 | 0.556 | 0.109 |
D-乳酸 LD/(mmol·L-1) | 8.04a | 6.38b | 6.72b | 6.91b | 0.282 | <0.001 | 0.003 | <0.001 |
项目Item | 组别Group | SEM | P值 P-value | |||||
---|---|---|---|---|---|---|---|---|
CON | BP1 | BP5 | BP10 | 处理Treatment | 线性Linear | 二次Quadratic | ||
IL-1β/(pg·mg-1) | 16.70a | 14.18b | 13.93b | 14.70b | 0.805 | 0.010 | 0.023 | 0.009 |
IL-6/(pg·mg-1) | 36.91a | 32.71b | 32.29b | 33.52b | 1.414 | 0.016 | 0.028 | 0.013 |
IL-10/(pg·mg-1) | 35.46b | 40.50a | 40.90a | 39.48a | 1.712 | 0.018 | 0.032 | 0.015 |
TNF-α/(pg·mg-1) | 36.65a | 33.14b | 32.87b | 33.81b | 1.158 | 0.015 | 0.026 | 0.013 |
TGF-β/(ng·mg-1) | 6.17b | 7.06a | 7.18a | 6.93a | 0.303 | 0.014 | 0.021 | 0.015 |
IFN-γ/(pg·mL-1) | 71.27b | 77.47a | 78.17a | 76.22a | 2.293 | 0.029 | 0.044 | 0.021 |
PPARγ/(nmol·g-1) | 27.16b | 32.14a | 32.50a | 31.20a | 1.637 | 0.014 | 0.025 | 0.013 |
表4 短小芽孢杆菌对炎症细胞因子的影响
Table 4 Effects of B. pumilus on inflammatory factors
项目Item | 组别Group | SEM | P值 P-value | |||||
---|---|---|---|---|---|---|---|---|
CON | BP1 | BP5 | BP10 | 处理Treatment | 线性Linear | 二次Quadratic | ||
IL-1β/(pg·mg-1) | 16.70a | 14.18b | 13.93b | 14.70b | 0.805 | 0.010 | 0.023 | 0.009 |
IL-6/(pg·mg-1) | 36.91a | 32.71b | 32.29b | 33.52b | 1.414 | 0.016 | 0.028 | 0.013 |
IL-10/(pg·mg-1) | 35.46b | 40.50a | 40.90a | 39.48a | 1.712 | 0.018 | 0.032 | 0.015 |
TNF-α/(pg·mg-1) | 36.65a | 33.14b | 32.87b | 33.81b | 1.158 | 0.015 | 0.026 | 0.013 |
TGF-β/(ng·mg-1) | 6.17b | 7.06a | 7.18a | 6.93a | 0.303 | 0.014 | 0.021 | 0.015 |
IFN-γ/(pg·mL-1) | 71.27b | 77.47a | 78.17a | 76.22a | 2.293 | 0.029 | 0.044 | 0.021 |
PPARγ/(nmol·g-1) | 27.16b | 32.14a | 32.50a | 31.20a | 1.637 | 0.014 | 0.025 | 0.013 |
项目 Item | 组别Group | SEM | P值 P-value | |||||
---|---|---|---|---|---|---|---|---|
CON | BP1 | BP5 | BP10 | 处理Treatment | 线性Linear | 二次Quadratic | ||
中性粒细胞Neutrophil | 43.33 | 39.17 | 13.50 | 10.33 | 16.230 | 0.118 | 0.025 | 0.966 |
淋巴细胞Lymphocyte | 3.50 | 5.33 | 3.50 | 4.17 | 2.094 | 0.796 | 0.980 | 0.698 |
巨噬细胞Macrophages | 2.83 | 3.33 | 2.67 | 1.33 | 1.117 | 0.346 | 0.159 | 0.259 |
表5 短小芽孢杆菌对炎症细胞数量的影响
Table 5 Effects of B. pumilus on the number of inflammatory cells
项目 Item | 组别Group | SEM | P值 P-value | |||||
---|---|---|---|---|---|---|---|---|
CON | BP1 | BP5 | BP10 | 处理Treatment | 线性Linear | 二次Quadratic | ||
中性粒细胞Neutrophil | 43.33 | 39.17 | 13.50 | 10.33 | 16.230 | 0.118 | 0.025 | 0.966 |
淋巴细胞Lymphocyte | 3.50 | 5.33 | 3.50 | 4.17 | 2.094 | 0.796 | 0.980 | 0.698 |
巨噬细胞Macrophages | 2.83 | 3.33 | 2.67 | 1.33 | 1.117 | 0.346 | 0.159 | 0.259 |
图1 短小芽孢杆菌对羔羊结肠上皮炎性细胞浸润的影响(HE染色,400×;中性粒细胞(↑)淋巴细胞(↑)巨噬细胞(↑))
Fig. 1 Effects of B. pumilus on inflammatory cell infiltration in the colonic epithelium of goat kids(hematoxylin-eosin staining, 400×; neutrophil(↑), lymphocyte(↑), macrophages(↑))
项目 Item | 组别Group | SEM | P值P-value | |||||
---|---|---|---|---|---|---|---|---|
CON | BP1 | BP5 | BP10 | 处理Treatment | 线性Linear | 二次Quadratic | ||
隐窝深度 Crypt depth | 547.61 | 530.25 | 544.89 | 532.91 | 19.882 | 0.771 | 0.640 | 0.849 |
黏膜厚度 Mucosal thickness | 623.97 | 618.41 | 629.44 | 615.89 | 19.881 | 0.907 | 0.834 | 0.777 |
肌层厚度Muscular thickness | 330.75b | 517.75a | 356.38b | 344.44b | 32.330 | <0.001 | 0.241 | <0.001 |
杯状细胞数量Number of goblet cells | 464.50 | 424.67 | 434.89 | 436.61 | 22.854 | 0.350 | 0.313 | 0.203 |
表6 短小芽孢杆菌对结肠组织形态的影响
Table 6 Effects of B. pumilus on colonic morphology μm
项目 Item | 组别Group | SEM | P值P-value | |||||
---|---|---|---|---|---|---|---|---|
CON | BP1 | BP5 | BP10 | 处理Treatment | 线性Linear | 二次Quadratic | ||
隐窝深度 Crypt depth | 547.61 | 530.25 | 544.89 | 532.91 | 19.882 | 0.771 | 0.640 | 0.849 |
黏膜厚度 Mucosal thickness | 623.97 | 618.41 | 629.44 | 615.89 | 19.881 | 0.907 | 0.834 | 0.777 |
肌层厚度Muscular thickness | 330.75b | 517.75a | 356.38b | 344.44b | 32.330 | <0.001 | 0.241 | <0.001 |
杯状细胞数量Number of goblet cells | 464.50 | 424.67 | 434.89 | 436.61 | 22.854 | 0.350 | 0.313 | 0.203 |
图2 羔羊结肠上皮组织形态结构(HE染色,40×;隐窝深度(绿色),黏膜厚度(红色),肌层厚度(黄色))
Fig. 2 Colonic morphology and structure of goat kids(hematoxylin-eosin staining, 40×;crypt depth(green),mucosal thickness(red),and muscular thickness(yellow))
项目 Item | 组别Group | SEM | P值 P-value | |||||
---|---|---|---|---|---|---|---|---|
CON | BP1 | BP5 | BP10 | 处理Treatment | 线性Linear | 二次Quadratic | ||
TP/(g·L-1) | 2.75 | 2.83 | 2.93 | 2.87 | 0.167 | 0.743 | 0.389 | 0.555 |
MUC2/(ng·mg-1) | 2.24b | 2.62a | 2.67a | 2.55a | 0.131 | 0.017 | 0.027 | 0.015 |
Claudin-1/(ng·mg-1) | 1.68b | 2.15a | 2.20a | 2.06a | 0.162 | 0.020 | 0.031 | 0.017 |
Claudin-4/(ng·mg-1) | 1.76b | 2.23a | 2.28a | 2.13a | 0.166 | 0.022 | 0.039 | 0.016 |
Occludin/(ng·mg-1) | 2.80b | 3.26a | 3.30a | 3.17a | 0.158 | 0.017 | 0.030 | 0.015 |
ZO-1/(ng·mg-1) | 1.91b | 2.27a | 2.32a | 2.19a | 0.128 | 0.022 | 0.041 | 0.014 |
表7 短小芽孢杆菌对结肠紧密连接蛋白的影响
Table 7 Effects of B. pumilus on colonic tight junction protein
项目 Item | 组别Group | SEM | P值 P-value | |||||
---|---|---|---|---|---|---|---|---|
CON | BP1 | BP5 | BP10 | 处理Treatment | 线性Linear | 二次Quadratic | ||
TP/(g·L-1) | 2.75 | 2.83 | 2.93 | 2.87 | 0.167 | 0.743 | 0.389 | 0.555 |
MUC2/(ng·mg-1) | 2.24b | 2.62a | 2.67a | 2.55a | 0.131 | 0.017 | 0.027 | 0.015 |
Claudin-1/(ng·mg-1) | 1.68b | 2.15a | 2.20a | 2.06a | 0.162 | 0.020 | 0.031 | 0.017 |
Claudin-4/(ng·mg-1) | 1.76b | 2.23a | 2.28a | 2.13a | 0.166 | 0.022 | 0.039 | 0.016 |
Occludin/(ng·mg-1) | 2.80b | 3.26a | 3.30a | 3.17a | 0.158 | 0.017 | 0.030 | 0.015 |
ZO-1/(ng·mg-1) | 1.91b | 2.27a | 2.32a | 2.19a | 0.128 | 0.022 | 0.041 | 0.014 |
[1] |
Fortuoso BF, Gebert RR, Griss LG, et al. Reduction of stool bacterial counts and prevention of diarrhea using an oral homeopathic product in newborn lambs[J]. Microb Pathog, 2019, 127: 347-351.
doi: 10.1016/j.micpath.2018.12.022 URL |
[2] |
Hong HA, Duc LH, Cutting SM. The use of bacterial spore formers as probiotics[J]. FEMS Microbiol Rev, 2005, 29(4): 813-835.
doi: 10.1016/j.femsre.2004.12.001 pmid: 16102604 |
[3] |
Hyronimus B, Le Marrec C, Sassi AH, et al. Acid and bile tolerance of spore-forming lactic acid bacteria[J]. Int J Food Microbiol, 2000, 61(2-3): 193-197.
pmid: 11078170 |
[4] |
Cutting SM. Bacillus probiotics[J]. Food Microbiol, 2011, 28(2): 214-220.
doi: 10.1016/j.fm.2010.03.007 pmid: 21315976 |
[5] | 鲍振国, 张文举, 胡猛, 等. 芽孢杆菌的研究进展及其在动物生产中的应用[J]. 饲料博览, 2012(1): 17-20. |
Bao ZG, Zhang WJ, Hu M, et al. Research progress of Bacillus and its application in animal production[J]. Feed Rev, 2012(1): 17-20. | |
[6] |
Bottone EJ, Peluso RW. Production by Bacillus pumilus(MSH)of an antifungal compound that is active against Mucoraceae and Aspergillus species: preliminary report[J]. J Med Microbiol, 2003, 52(Pt 1): 69-74.
doi: 10.1099/jmm.0.04935-0 pmid: 12488568 |
[7] |
Bilal M, Achard C, Barbe F, et al. Bacillus pumilus and Bacillus subtilis promote early maturation of cecal microbiota in broiler chickens[J]. Microorganisms, 2021, 9(9): 1899.
doi: 10.3390/microorganisms9091899 URL |
[8] |
Bonos E, Giannenas I, Sidiropoulou E, et al. Effect of Bacillus pumilus supplementation on performance, intestinal morphology, gut microflora and meat quality of broilers fed different energy concentrations[J]. Anim Feed Sci Technol, 2021, 274: 114859.
doi: 10.1016/j.anifeedsci.2021.114859 URL |
[9] |
Liu SB, Wang SF, Cai Y, et al. Beneficial effects of a host gut-derived probiotic, Bacillus pumilus, on the growth, non-specific immune response and disease resistance of juvenile golden pompano, Trachinotus ovatus[J]. Aquaculture, 2020, 514: 734446.
doi: 10.1016/j.aquaculture.2019.734446 URL |
[10] |
Srisapoome P, Areechon N. Efficacy of viable Bacillus pumilus isolated from farmed fish on immune responses and increased disease resistance in Nile tilapia(Oreochromis niloticus): laboratory and on-farm trials[J]. Fish Shellfish Immunol, 2017, 67: 199-210.
doi: 10.1016/j.fsi.2017.06.018 URL |
[11] |
Zhang NC, Wang L, Wei Y. Effects of Bacillus amyloliquefaciens and Bacillus pumilus on rumen and intestine morphology and microbiota in weanling Jintang black goat[J]. Animals, 2020, 10(9): 1604.
doi: 10.3390/ani10091604 URL |
[12] |
Wang SQ, Ma T, Zhao GH, et al. Effect of age and weaning on growth performance, rumen fermentation, and serum parameters in lambs fed starter with limited ewe-lamb interaction[J]. Animals, 2019, 9(10): 825.
doi: 10.3390/ani9100825 URL |
[13] |
赖金花, 王仁杰, 贾海, 等. 2种不同加工工艺氧化锌对断奶仔猪生长性能和肠道健康的比较研究[J]. 动物营养学报, 2022, 34(10): 6483-6490.
doi: 10.3969/j.issn.1006-267x.2022.10.043 |
Lai JH, Wang RJ, Jia H, et al. Comparative study of zinc oxide with two different processing techniques on growth performance and intestinal health of weaned piglets[J]. Chin J Anim Nutr, 2022, 34(10): 6483-6490. | |
[14] |
Truong Thy HT, Tri NN, Quy OM, et al. Effects of the dietary supplementation of mixed probiotic spores of Bacillus amyloliquefaciens 54A, and Bacillus pumilus 47B on growth, innate immunity and stress responses of striped catfish(Pangasianodon hypophthalmus)[J]. Fish Shellfish Immunol, 2017, 60: 391-399.
doi: 10.1016/j.fsi.2016.11.016 URL |
[15] | 黄坤鹏. 鱼源芽孢杆菌在石斑鱼育苗中的应用及作用机理的初步研究[D]. 厦门: 集美大学, 2012. |
Huang KP. Application and preliminary study of the mechanism of autochthonous probiotic Bacillus in grouper Epinephelus coioides nursery[D]. Xiamen: Jimei University, 2012. | |
[16] | 张海涛, 王加启, 卜登攀, 等. 纳豆枯草芽孢杆菌对犊牛断奶前后瘤胃发酵和酶活的影响[J]. 中国畜牧兽医, 2009, 36(12): 5-11. |
Zhang HT, Wang JQ, Bu DP, et al. Effect of supplementation of Bacillus subtilis natto on ruminal fermentation and activity of enzymes[J]. China Anim Husb Vet Med, 2009, 36(12): 5-11. | |
[17] | Stojević Z, Piršljin J, Milinković-Tur S, et al. Activities of AST, ALT and GGT in clinically healthy dairy cows during lactation and in the dry period[J]. Vet Arhiv, 2005, 75: 67-73. |
[18] |
Li AY, Wang YP, Li ZX, et al. Probiotics isolated from yaks improves the growth performance, antioxidant activity, and cytokines related to immunity and inflammation in mice[J]. Microb Cell Fact, 2019, 18(1): 112.
doi: 10.1186/s12934-019-1161-6 pmid: 31217027 |
[19] |
Shkoda A, Ruiz PA, Daniel H, et al. Interleukin-10 blocked endoplasmic reticulum stress in intestinal epithelial cells: impact on chronic inflammation[J]. Gastroenterology, 2007, 132(1): 190-207.
doi: 10.1053/j.gastro.2006.10.030 pmid: 17241871 |
[20] |
Ahn H, Kang SG, Yoon SI, et al. Poly-gamma-glutamic acid from Bacillus subtilis upregulates pro-inflammatory cytokines while inhibiting NLRP3, NLRC4 and AIM2 inflammasome activation[J]. Cell Mol Immunol, 2018, 15(2): 111-119.
doi: 10.1038/cmi.2016.13 URL |
[21] |
Liu X, Xia B, He T, et al. Oral administration of a select mixture of Lactobacillus and Bacillus alleviates inflammation and maintains mucosal barrier integrity in the ileum of pigs challenged with Salmonella infantis[J]. Microorganisms, 2019, 7(5): 135.
doi: 10.3390/microorganisms7050135 URL |
[22] |
Sun YB, Zhang YX, Liu MY, et al. Effects of dietary Bacillus amyloliquefaciens CECT 5940 supplementation on growth performance, antioxidant status, immunity, and digestive enzyme activity of broilers fed corn-wheat-soybean meal diets[J]. Poult Sci, 2022, 101(2): 101585.
doi: 10.1016/j.psj.2021.101585 URL |
[23] |
Maheshwari A, Kelly DR, Nicola T, et al. TGF-β2 suppresses macrophage cytokine production and mucosal inflammatory responses in the developing intestine[J]. Gastroenterology, 2011, 140(1): 242-253.
doi: 10.1053/j.gastro.2010.09.043 pmid: 20875417 |
[24] |
Sun L, Guo LW, Xu GQ, et al. Quercetin reduces inflammation and protects gut microbiota in broilers[J]. Molecules, 2022, 27(10): 3269.
doi: 10.3390/molecules27103269 URL |
[25] |
Zhang LL, Wei XB, Zhang RJ, et al. A novel peptide ameliorates LPS-induced intestinal inflammation and mucosal barrier damage via its antioxidant and antiendotoxin effects[J]. Int J Mol Sci, 2019, 20(16): 3974.
doi: 10.3390/ijms20163974 URL |
[26] |
Wang MW, Huang HJ, Liu S, et al. Tannic acid modulates intestinal barrier functions associated with intestinal morphology, antioxidative activity, and intestinal tight junction in a diquat-induced mouse model[J]. RSC Adv, 2019, 9(55): 31988-31998.
doi: 10.1039/C9RA04943F URL |
[27] |
Hu SL, Wang Y, Wen XL, et al. Effects of low-molecular-weight chitosan on the growth performance, intestinal morphology, barrier function, cytokine expression and antioxidant system of weaned piglets[J]. BMC Vet Res, 2018, 14(1): 215.
doi: 10.1186/s12917-018-1543-8 pmid: 29973213 |
[28] |
Qin L, Xiang JH, Xiong F, et al. Effects of Bacillus licheniformis on the growth, antioxidant capacity, intestinal barrier and disease resistance of grass carp(Ctenopharyngodon idella)[J]. Fish Shellfish Immunol, 2020, 97: 344-350.
doi: 10.1016/j.fsi.2019.12.040 URL |
[29] |
Sheng KL, Xu YF, Kong XW, et al. Probiotic Bacillus cereus alleviates dextran sulfate sodium-induced colitis in mice through improvement of the intestinal barrier function, anti-inflammation, and gut microbiota modulation[J]. J Agric Food Chem, 2021, 69(49): 14810-14823.
doi: 10.1021/acs.jafc.1c03375 URL |
[30] |
Horn N, Ruch F, Miller G, et al. Impact of acute water and feed deprivation events on growth performance, intestinal characteristics, and serum stress markers in weaned pigs[J]. J Anim Sci, 2014, 92(10): 4407-4416.
doi: 10.2527/jas.2014-7673 pmid: 25184845 |
[31] |
Lu P, Burger-van Paassen N, van der Sluis M, et al. Colonic gene expression patterns of mucin Muc2 knockout mice reveal various phases in colitis development[J]. Inflamm Bowel Dis, 2011, 17(10): 2047-2057.
doi: 10.1002/ibd.21592 pmid: 21910166 |
[1] | 王万顺, 付强, 魏玉荣, 胡新艳, 陈俊贞, 李泽宇, 史慧君. 慢病毒介导Occludin过表达影响BVDV感染BALB/c小鼠的研究[J]. 生物技术通报, 2022, 38(6): 291-298. |
[2] | 康凌云, 陈建胜, 甘瀚凌, 韩露露, 冯海霞, 刁其玉, 邢凯, 崔凯. 基于转录组学技术分析蛋白质限制与补偿对羔羊肝脏抗氧化性能的影响[J]. 生物技术通报, 2021, 37(6): 171-180. |
[3] | 李成名, 王佳懿, 卢磊,. 短小芽孢杆菌LC01漆酶基因在毕赤酵母中的胞外表达及重组漆酶酶学性质研究[J]. 生物技术通报, 2018, 34(3): 185-193. |
[4] | 贺婷停, 宋婷, 王超, 张长斌, 王海燕. 短小芽孢杆菌实时荧光定量PCR分析中内参基因的筛选[J]. 生物技术通报, 2016, 32(11): 99-106. |
[5] | 苏二正, 吴向萍, 高蓓, 魏东芝. 短小芽孢杆菌脂肪酶基因的克隆、表达及酶学性质研究[J]. 生物技术通报, 2014, 0(4): 132-138. |
[6] | 郑宏臣;刘逸寒;刘晓光;韩杨;王建玲;路福平;. 碱性木聚糖酶产生菌的筛选、XynG1-3基因克隆表达及酶学性质研究[J]. , 2012, 0(10): 106-113. |
[7] | 应琪;李太武;苏秀榕;李晔;周君;崔静;王中华;李松伟;. 环介导恒温扩增法快速检测短小芽孢杆菌[J]. , 2011, 0(02): 179-183. |
[8] | 吴琼;苑琳;路福平;申明华;刘纯燕;白宇辰;. 高碱性纤维素酶产生菌的筛选及鉴定[J]. , 2010, 0(09): 205-209. |
[9] | 王岩;沈锡权;吴祖芳;. 短小芽孢杆菌肉碱转运系统opuC基因的克隆与序列分析[J]. , 2009, 0(11): 69-74. |
[10] | 张利鑫;刘强;. 添加N-乙酰-D-半乳糖胺消除大豆凝集素抗营养活性的可行性研究[J]. , 2009, 0(07): 156-159. |
[11] | 衡文娜;郭春华;张晓晖;张重庆;陈玉红;. 小型猪与梅山猪Prop1基因的比较分析[J]. , 2007, 0(05): 144-147. |
[12] | 秦春圃. 猪血浆蛋白酶多态性与杂种优势的关系[J]. , 2004, 0(04): 58-58. |
[13] | 汪开. 印发现某些海洋生物有抗细菌活性[J]. , 2003, 0(04): 49-49. |
[14] | 孙雷心. 文摘[J]. , 1998, 0(06): -. |
[15] | 孙雷心;. 抗线虫的重组疫苗[J]. , 1993, 0(08): 19-19. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||