[1] Huggett J, Dheda K, Bustin S, et al. Real-time RT-PCR normalisation;strategies and considerations[J]. Genes and Immunity, 2005, 6(4):279-284. [2] Ginzinger DG. Gene quantification using real-time quantitative PCR:an emerging technology hits the mainstream[J]. Experimental Hematology, 2002, 30(6):503-512. [3] Suzuki T, Higgins P, Crawford D. Control selection for RNA quantitation[J]. Biotechniques, 2000, 29(2):332-337. [4] 张艳君, 朱志峰, 陆融, 等. 基因表达转录分析中内参基因的选择[J]. 生物化学与生物物理进展, 2007, 34(5):546-550. [5] Sun M, Wang Y, Yang D, et al. Reference genes for real-time fluorescence quantitative PCR in Camellia sinensis[J]. Chin Bull Bot, 2010, 45(5):579-587. [6] Neretin LN, Schippers A, Pernthaler A, et al. Quantification of dissimilatory(bi)sulphite reductase gene expression in Desulfobacterium autotrophicum using real-time RT-PCR[J]. Environmental Microbiology, 2003, 5(8):660-671. [7] Edwards K, Saunders N. Real-time PCR used to measure stress-induced changes in the expression of the genes of the alginate pathway of Pseudomonas aeruginosa[J]. Journal of Applied Microbiology, 2001, 91(1):29-37. [8] Vandecasteele S, Peetermans W, Merckx R, et al. Quantification of expression of Staphylococcus epidermidis housekeeping genes with Taqman quantitative PCR during in vitro growth and under different conditions[J]. J Bacteriol, 2001, 183(24):7094-7101. [9] Hansen MC, Nielsen AK, Molin S, et al. Changes in rRNA levels during stress invalidates results from mRNA blotting:fluorescence in situ rRNA hybridization permits renormalization for estimation of cellular mRNA levels[J]. J Bacteriol, 2001, 16:4747-4751. [10] Davis B, Luger S, Tai P. Role of ribosome degradation in the death of starved Escherichia coli cells[J]. Journal of Bacteriology, 1986, 166(2):439-445. [11] St John A, Goldberg A. Effects of starvation for potassium and other inorganic ions on protein degradation and ribonucleic acid synthesis in Escherichia coli[J]. Journal of Bacteriology, 1980, 143(3):1223-1233. [12] Radonić A, Thulke S, Mackay IM, et al. Guideline to reference gene selection for quantitative real-time PCR[J]. Biochemi Biophys Res Commun, 2004, 313(4):856-862. [13] Vandesompele J, De Preter K, Pattyn F, et al. Accurate normaliza-tion of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology, 2002, 7:1-12. [14] Savard P, Roy D. Determination of differentially expressed genes involved in arabinoxylan degradation by Bifidobacterium longum NCC2705 using real-time RT-PCR[J]. Probiotics and Antimicrobial Proteins, 2009, 1(2):121-129. [15] Marco ML, Bongers RS, De Vos WM, et al. Spatial and temporal expression of Lactobacillus plantarum genes in the gastrointestinal tracts of mice[J]. Appl Environ Microbiol, 2007, 1:124-132. [16] Spinsanti G, Panti C, Lazzeri E, et al. Selection of reference genes for quantitative RT-PCR studies in striped dolphin(Stenella coeruleoalba)skin biopsies[J]. BMC Mol Biol, 2006, 7(1):1. [17] Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR data:a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Research, 2004, 64(15):5245-5250. [18] Carvalho DM, de Sá PH, Castro TL, et al. Reference genes for RT-qPCR studies in Corynebacterium pseudotuberculosis identified through analysis of RNA-seq data[J]. Antonie Van Leeuwenhoek, 2014, 106(4):605-614. [19] Nicot N, Hausman JF, Hoffmann L, et al. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress[J]. Journal of Experimental Botany, 2005, 56(421):2907-2914. [20] Long XY, Wang JR, Ouellet T, et al. Genome-wide identification and evaluation of novel internal control genes for Q-PCR based transcript normalization in wheat[J]. Plant Molecular Biology, 2010, 74(3):307-311. [21] Mascia T, Santovito E, Gallitelli D, et al. Evaluation of reference genes for quantitative reverse-transcription polymerase chain reaction normalization in infected tomato plants[J]. Molecular Plant Pathology, 2010, 11(6):805-816. [22] Kou SJ, Wu XM, Liu Z, et al. Selection and validation of suitable reference genes for miRNA expression normalization by quantitative RT-PCR in citrus somatic embryogenic and adult tissues[J]. Plant Cell Reports, 2012, 31(12):2151-2163. [23] 周兰, 张利义, 张彩霞, 等. 苹果实时荧光定量PCR分析中内参基因的筛选[J]. 果树学报, 2012, 29(6):965-970. [24] 黄雪玲, 冯浩, 康振生. 小麦条锈菌实时荧光定量PCR分析中内参基因的选择[J]. 农业生物技术学报, 2012, 20(2):181-187. [25] 薛承美, 解廷娜, 叶素丹, 等. 利用实时荧光定量PCR筛选新蚜虫疠霉内参基因[J]. 农业生物技术学报, 2014, 22(12):1575-1583. [26] Bai U, Mandic-Mulec I, Smith I. SinI modulates the activity of SinR, a developmental switch protein of Bacillus subtilis, by protein-protein interaction[J]. Genes & Development, 1993, 7(1):139-148. [27] Ferrari FA, Trach K, LeCoq D, et al. Characterization of the spo0A locus and its deduced product[J]. Proceedings of the National Academy of Sciences, 1985, 82(9):2647-2651. [28] Boutry C, Wahl A, Delplace B, et al. Adaptor protein MecA is a negative regulator of the expression of late competence genes in Streptococcus thermophilus[J]. Journal of Bacteriology, 2012, 194(7):1777-1788. [29] Wang F, Mei Z, Qi Y, et al. Structure and mechanism of the hexameric MecA-ClpC molecular machine[J]. Nature, 2011, 471(7338):331-335. [30] Tian XL, Dong G, Liu T, et al. MecA protein acts as a negative regulator of genetic competence in Streptococcus mutans[J]. Journal of Bacteriology, 2013, 195(22):5196-5206. |