生物技术通报 ›› 2024, Vol. 40 ›› Issue (3): 100-108.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0540
刘灿1(), 闫晓阳1, 曾焱1, 欧祥龙1, 廖永洪1,2()
收稿日期:
2023-05-25
出版日期:
2024-03-26
发布日期:
2024-04-08
通讯作者:
廖永洪,男,博士,副教授,研究方向:动物细菌病疫苗研究与开发;E-mail: yonghongliao@swu.edu.cn作者简介:
刘灿,男,硕士研究生,研究方向:动物细菌病疫苗研究与开发;E-mail: 1851334119@qq.com
基金资助:
LIU Can1(), YAN Xiao-yang1, ZENG Yan1, OU Xiang-long1, LIAO Yong-hong1,2()
Received:
2023-05-25
Published:
2024-03-26
Online:
2024-04-08
摘要:
外膜囊泡(OMVs)是由革兰阴性菌释放的一种囊泡状结构,在革兰阴性菌的生长、感染以及与周围环境交流等过程中发挥重要作用。由于OMVs无活性、不能复制且具有良好的免疫原性,被广泛应用于新型疫苗的研究。但天然OMVs产量低,无法达到规模化生产的要求,OMVs产量提升是OMVs疫苗产业化要解决的关键核心技术问题。本文主要从细菌基因改造、生长培养条件优化和OMVs生产纯化工艺优化3个方面对提升OMVs产量的研究进行综述,以期为OMVs疫苗产业化研究开发提供参考。
刘灿, 闫晓阳, 曾焱, 欧祥龙, 廖永洪. 增加革兰阴性菌外膜囊泡产量的研究进展[J]. 生物技术通报, 2024, 40(3): 100-108.
LIU Can, YAN Xiao-yang, ZENG Yan, OU Xiang-long, LIAO Yong-hong. Research Progress in Increasing Yield of Outer Membrane Vesicles from Gram Negative Bacteria[J]. Biotechnology Bulletin, 2024, 40(3): 100-108.
[1] |
Juodeikis R, Carding SR. Outer membrane vesicles: biogenesis, functions, and issues[J]. Microbiol Mol Biol Rev, 2022, 86(4): e0003222.
doi: 10.1128/mmbr.00032-22 URL |
[2] |
van der Pol L, Stork M, van der Ley P. Outer membrane vesicles as platform vaccine technology[J]. Biotechnol J, 2015, 10(11): 1689-1706.
doi: 10.1002/biot.201400395 pmid: 26912077 |
[3] |
Balhuizen MD, Veldhuizen EJA, Haagsman HP. Outer membrane vesicle induction and isolation for vaccine development[J]. Front Microbiol, 2021, 12: 629090.
doi: 10.3389/fmicb.2021.629090 URL |
[4] |
van de Waterbeemd B, Zomer G, Kaaijk P, et al. Improved production process for native outer membrane vesicle vaccine against Neisseria meningitidis[J]. PLoS One, 2013, 8(5): e65157.
doi: 10.1371/journal.pone.0065157 URL |
[5] |
Gerritzen MJH, Salverda MLM, Martens DE, et al. Spontaneously released Neisseria meningitidis outer membrane vesicles as vaccine platform: production and purification[J]. Vaccine, 2019, 37(47): 6978-6986.
doi: S0264-410X(19)30161-6 pmid: 31383485 |
[6] |
Li M, Zhou H, Yang C, et al. Bacterial outer membrane vesicles as a platform for biomedical applications: an update[J]. J Control Release, 2020, 323: 253-268.
doi: 10.1016/j.jconrel.2020.04.031 URL |
[7] |
Sartorio MG, Pardue EJ, Feldman MF, et al. Bacterial outer membrane vesicles: from discovery to applications[J]. Annu Rev Microbiol, 2021, 75: 609-630.
doi: 10.1146/annurev-micro-052821-031444 pmid: 34351789 |
[8] |
McBroom AJ, Kuehn MJ. Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response[J]. Mol Microbiol, 2007, 63(2): 545-558.
doi: 10.1111/j.1365-2958.2006.05522.x pmid: 17163978 |
[9] | Schertzer JW, Whiteley M. A bilayer-couple model of bacterial outer membrane vesicle biogenesis[J]. mBio, 2012, 3(2): e00297-11. |
[10] |
Roier S, Zingl FG, Cakar F, et al. A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria[J]. Nat Commun, 2016, 7: 10515.
doi: 10.1038/ncomms10515 pmid: 26806181 |
[11] |
Zhu Z, Antenucci F, Villumsen KR, et al. Bacterial outer membrane vesicles as a versatile tool in vaccine research and the fight against antimicrobial resistance[J]. mBio, 2021, 12(4): e0170721.
doi: 10.1128/mBio.01707-21 URL |
[12] |
Haurat MF, Elhenawy W, Feldman MF. Prokaryotic membrane vesicles: new insights on biogenesis and biological roles[J]. Biol Chem, 2015, 396(2): 95-109.
doi: 10.1515/hsz-2014-0183 pmid: 25178905 |
[13] |
Avila-Calderón ED, Ruiz-Palma MDS, Aguilera-Arreola MG, et al. Outer membrane vesicles of gram-negative bacteria: an outlook on biogenesis[J]. Front Microbiol, 2021, 12: 557902.
doi: 10.3389/fmicb.2021.557902 URL |
[14] |
McBroom AJ, Johnson AP, Vemulapalli S, et al. Outer membrane vesicle production by Escherichia coli is independent of membrane instability[J]. J Bacteriol, 2006, 188(15): 5385-5392.
pmid: 16855227 |
[15] |
Yokoyama F, Kawamoto J, Imai T, et al. Characterization of extracellular membrane vesicles of an Antarctic bacterium, Shewanella livingstonensis Ac10, and their enhanced production by alteration of phospholipid composition[J]. Extremophiles, 2017, 21(4): 723-731.
doi: 10.1007/s00792-017-0937-z pmid: 28434130 |
[16] |
Ojima Y, Mohanadas T, Kitamura K, et al. Deletion of degQ gene enhances outer membrane vesicle production of Shewanella oneidensis cells[J]. Arch Microbiol, 2017, 199(3): 415-423.
doi: 10.1007/s00203-016-1315-4 URL |
[17] |
Lima S, Guo MS, Chaba R, et al. Dual molecular signals mediate the bacterial response to outer-membrane stress[J]. Science, 2013, 340(6134): 837-841.
doi: 10.1126/science.1235358 pmid: 23687042 |
[18] |
Nevermann J, Silva A, Otero C, et al. Identification of genes involved in biogenesis of outer membrane vesicles(OMVs)in Salmonella enterica serovar typhi[J]. Front Microbiol, 2019, 10: 104.
doi: 10.3389/fmicb.2019.00104 pmid: 30778340 |
[19] |
Eddy JL, Gielda LM, Caulfield AJ, et al. Production of outer membrane vesicles by the plague pathogen Yersinia pestis[J]. PLoS One, 2014, 9(9): e107002.
doi: 10.1371/journal.pone.0107002 URL |
[20] |
Schwechheimer C, Kulp A, Kuehn MJ. Modulation of bacterial outer membrane vesicle production by envelope structure and content[J]. BMC Microbiol, 2014, 14: 324.
doi: 10.1186/s12866-014-0324-1 pmid: 25528573 |
[21] |
Hayashi JI, Hamada N, Kuramitsu HK. The autolysin of Porphyromonas gingivalis is involved in outer membrane vesicle release[J]. FEMS Microbiol Lett, 2002, 216(2): 217-222.
doi: 10.1111/fml.2002.216.issue-2 URL |
[22] |
Deatherage BL, Lara JC, Bergsbaken T, et al. Biogenesis of bacterial membrane vesicles[J]. Mol Microbiol, 2009, 72(6): 1395-1407.
doi: 10.1111/j.1365-2958.2009.06731.x pmid: 19432795 |
[23] |
Kulp AJ, Sun B, Ai T, et al. Genome-wide assessment of outer membrane vesicle production in Escherichia coli[J]. PLoS One, 2015, 10(9): e0139200.
doi: 10.1371/journal.pone.0139200 URL |
[24] |
Baker JL, Chen LX, Rosenthal JA, et al. Microbial biosynthesis of designer outer membrane vesicles[J]. Curr Opin Biotechnol, 2014, 29: 76-84.
doi: 10.1016/j.copbio.2014.02.018 URL |
[25] |
Wessel AK, Liew J, Kwon T, et al. Role of Pseudomonas aeruginosa peptidoglycan-associated outer membrane proteins in vesicle formation[J]. J Bacteriol, 2013, 195(2): 213-219.
doi: 10.1128/JB.01253-12 pmid: 23123904 |
[26] |
Clifton LA, Skoda MWA, Le Brun AP, et al. Effect of divalent cation removal on the structure of gram-negative bacterial outer membrane models[J]. Langmuir, 2015, 31(1): 404-412.
doi: 10.1021/la504407v pmid: 25489959 |
[27] |
Lam NH, Ma Z, Ha BY. Electrostatic modification of the lipopolysaccharide layer: competing effects of divalent cations and polycationic or polyanionic molecules[J]. Soft Matter, 2014, 10(38): 7528-7544.
doi: 10.1039/c4sm01262c pmid: 25109281 |
[28] | Sutterlin HA, Shi HD, May KL, et al. Disruption of lipid homeostasis in the Gram-negative cell envelope activates a novel cell death pathway[J]. Proc Natl Acad Sci USA, 2016, 113(11): E1565-E1574. |
[29] |
Schwechheimer C, Sullivan CJ, Kuehn MJ. Envelope control of outer membrane vesicle production in Gram-negative bacteria[J]. Biochemistry, 2013, 52(18): 3031-3040.
doi: 10.1021/bi400164t pmid: 23521754 |
[30] | Elhenawy W, Bording-Jorgensen M, Valguarnera E, et al. LPS remodeling triggers formation of outer membrane vesicles in Salmonella[J]. mBio, 2016, 7(4): e00940-16. |
[31] | Sinha A, Nyongesa S, Viau C, et al. PmrC(EptA)and CptA negatively affect outer membrane vesicle production in Citrobacter rodentium[J]. J Bacteriol, 2019, 201(7): e00454-18. |
[32] |
Kashyap D, Panda M, Baral B, et al. Outer membrane vesicles: an emerging vaccine platform[J]. Vaccines, 2022, 10(10): 1578.
doi: 10.3390/vaccines10101578 URL |
[33] |
Michel LV, Gallardo L, Konovalova A, et al. Ampicillin triggers the release of Pal in toxic vesicles from Escherichia coli[J]. Int J Antimicrob Agents, 2020, 56(6): 106163.
doi: 10.1016/j.ijantimicag.2020.106163 URL |
[34] |
Yun SH, Park EC, Lee SY, et al. Antibiotic treatment modulates protein components of cytotoxic outer membrane vesicles of multidrug-resistant clinical strain, Acinetobacter baumannii DU202[J]. Clin Proteomics, 2018, 15: 28.
doi: 10.1186/s12014-018-9204-2 |
[35] | Chan KW, Shone C, Hesp JR. Antibiotics and iron-limiting conditions and their effect on the production and composition of outer membrane vesicles secreted from clinical isolates of extraintestinal pathogenic E. coli[J]. Proteomics Clin Appl, 2017, 11(1-2). https://doi.org/10.1002/prca.201600091. |
[36] |
van de Waterbeemd B, Zomer G, van den Ijssel J, et al. Cysteine depletion causes oxidative stress and triggers outer membrane vesicle release by Neisseria meningitidis; implications for vaccine development[J]. PLoS One, 2013, 8(1): e54314.
doi: 10.1371/journal.pone.0054314 URL |
[37] |
Qiao L, Rao YF, Zhu KT, et al. Engineered remolding and application of bacterial membrane vesicles[J]. Front Microbiol, 2021, 12: 729369.
doi: 10.3389/fmicb.2021.729369 URL |
[38] |
Kulp A, Kuehn MJ. Biological functions and biogenesis of secreted bacterial outer membrane vesicles[J]. Annu Rev Microbiol, 2010, 64: 163-184.
doi: 10.1146/annurev.micro.091208.073413 pmid: 20825345 |
[39] |
Klimentová J, Stulík J. Methods of isolation and purification of outer membrane vesicles from gram-negative bacteria[J]. Microbiol Res, 2015, 170: 1-9.
doi: 10.1016/j.micres.2014.09.006 pmid: 25458555 |
[40] | de Jonge EF, Balhuizen MD, van Boxtel R, et al. Heat shock enhances outer-membrane vesicle release in Bordetella spp[J]. Curr Res Microb Sci, 2020, 2: 100009. |
[41] |
Acevedo R, Fernández S, Zayas C, et al. Bacterial outer membrane vesicles and vaccine applications[J]. Front Immunol, 2014, 5: 121.
doi: 10.3389/fimmu.2014.00121 pmid: 24715891 |
[42] |
Gerritzen MJH, Maas RHW, van den Ijssel J, et al. High dissolved oxygen tension triggers outer membrane vesicle formation by Neisseria meningitidis[J]. Microb Cell Fact, 2018, 17(1): 157.
doi: 10.1186/s12934-018-1007-7 pmid: 30285743 |
[43] |
Orench-Rivera N, Kuehn MJ. Environmentally controlled bacterial vesicle-mediated export[J]. Cell Microbiol, 2016, 18(11): 1525-1536.
doi: 10.1111/cmi.12676 pmid: 27673272 |
[44] |
van de Waterbeemd B, Streefland M, van der Ley P, et al. Improved OMV vaccine against Neisseria meningitidis using genetically engineered strains and a detergent-free purification process[J]. Vaccine, 2010, 28(30): 4810-4816.
doi: 10.1016/j.vaccine.2010.04.082 pmid: 20483197 |
[45] |
Mookherjee N, Anderson MA, Haagsman HP, et al. Antimicrobial host defence peptides: functions and clinical potential[J]. Nat Rev Drug Discov, 2020, 19(5): 311-332.
doi: 10.1038/s41573-019-0058-8 pmid: 32107480 |
[46] | Maredia R, Devineni N, Lentz P, et al. Vesiculation from Pseudomonas aeruginosa under sos[J]. Sci World J, 2012, 2012: 402919. |
[47] | Bru JL, Rawson B, Trinh C, et al. PQS produced by the Pseudomonas aeruginosa stress response repels swarms away from bacteriophage and antibiotics[J]. J Bacteriol, 2019, 201(23): e00383-19. |
[48] |
Toyofuku M, Zhou SM, Sawada I, et al. Membrane vesicle formation is associated with pyocin production under denitrifying conditions in Pseudomonas aeruginosa PAO1[J]. Environ Microbiol, 2014, 16(9): 2927-2938.
doi: 10.1111/emi.2014.16.issue-9 URL |
[49] |
Kulkarni HM, Nagaraj R, Jagannadham MV. Protective role of E. coli outer membrane vesicles against antibiotics[J]. Microbiol Res, 2015, 181: 1-7.
doi: 10.1016/j.micres.2015.07.008 pmid: 26640046 |
[50] |
Kesavan D, Vasudevan A, Wu L, et al. Integrative analysis of outer membrane vesicles proteomics and whole-cell transcriptome analysis of eravacycline induced Acinetobacter baumannii strains[J]. BMC Microbiol, 2020, 20(1): 31.
doi: 10.1186/s12866-020-1722-1 |
[51] |
Gerritzen MJH, Martens DE, Uittenbogaard JP, et al. Sulfate depletion triggers overproduction of phospholipids and the release of outer membrane vesicles by Neisseria meningitidis[J]. Sci Rep, 2019, 9(1): 4716.
doi: 10.1038/s41598-019-41233-x pmid: 30886228 |
[52] |
Antenucci F, Arak H, Gao JY, et al. Hydrostatic filtration enables large-scale production of outer membrane vesicles that effectively protect chickens against Gallibacterium anatis[J]. Vaccines, 2020, 8(1): 40.
doi: 10.3390/vaccines8010040 URL |
[53] |
Huang WL, Meng LX, Chen Y, et al. Bacterial outer membrane vesicles as potential biological nanomaterials for antibacterial therapy[J]. Acta Biomater, 2022, 140: 102-115.
doi: 10.1016/j.actbio.2021.12.005 URL |
[54] | Xu XM, Barreiro K, Musante L, et al. Management of tamm-horsfall protein for reliable urinary analytics[J]. Proteomics Clin Appl, 2019, 13(6): e1900018. |
[55] |
Lee SL, O'Connor TF, Yang XC, et al. Modernizing pharmaceutical manufacturing: from batch to continuous production[J]. J Pharm Innov, 2015, 10(3): 191-199.
doi: 10.1007/s12247-015-9215-8 URL |
[56] |
Gerritzen MJH, Stangowez L, van de Waterbeemd B, et al. Continuous production of Neisseria meningitidis outer membrane vesicles[J]. Appl Microbiol Biotechnol, 2019, 103(23-24): 9401-9410.
doi: 10.1007/s00253-019-10163-z pmid: 31676919 |
[57] |
Loera-Muro A, Angulo C. New trends in innovative vaccine development against Actinobacillus pleuropneumoniae[J]. Vet Microbiol, 2018, 217: 66-75.
doi: S0378-1135(17)31420-7 pmid: 29615259 |
[1] | 孙国凤. 透明体蛋白的克隆[J]. , 1992, 0(08): 13-13. |
[2] | 王璋瑜;. 对艾滋病疫苗的研究加强[J]. , 1991, 0(07): 16-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||