[1] |
Ali MY, Naseem T, Arshad M, et al. Host-plant variations affect the biotic potential, survival, and population projection of Myzus persicae(Hemiptera: Aphididae)[J]. Insects, 2021, 12(5): 375.
|
[2] |
Umina PA, Bass C, van Rooyen A, et al. Spirotetramat resistance in Myzus persicae(Sulzer)(Hemiptera: Aphididae)and its association with the presence of the A2666V mutation[J]. Pest Manag Sci, 2022, 78(11): 4822-4831.
doi: 10.1002/ps.7103
pmid: 35900771
|
[3] |
Zhan X, Liu Y, Liang X, et al. Methyl jasmonate-treated pepper(Capsicum annuum L.) depresses performance and alters activities of protective, detoxification and digestive enzymes of green peach Aphid[Myzus Persicae(sulzer)](Hemiptera: Aphididae)[J]. J Insect Sci, 2022, 22(6): 11.
|
[4] |
韦治艳, 戴仁怀, 杨洪, 等. 棉蚜和桃蚜取食辣椒和茄子对其发育繁殖的影响[J]. 中国植保导刊, 2022, 42(5): 10-14.
|
|
Wei ZY, Dai RH, et al. Effects of feeding Capsicum annuum and So-lanum melongena on development and reproduction of Aphis gossypii and Myzus persicae[J]. China Plant Prot, 2022, 42(5): 10-14.
|
[5] |
陈青, 梁晓, 伍春玲, 等. 抗蚜高产辣椒品种鉴定评价[J]. 热带作物学报, 2022, 43(2): 285-293.
doi: 10.3969/j.issn.1000-2561.2022.02.008
|
|
Chen Q, Liang X, Wu CL, et al. Identification and evaluation of Capsicum cultivars resistant to Myzus persicae(sulzer)with high yield[J]. Chin J Trop Crops, 2022, 43(2): 285-293.
|
[6] |
van Bel AJE, Will T. Functional evaluation of proteins in watery and gel saliva of aphids[J]. Front Plant Sci, 2016, 7: 1840.
doi: 10.3389/fpls.2016.01840
pmid: 28018380
|
[7] |
尚哲明, 刘德广. 蚜虫唾液蛋白研究进展[J]. 昆虫学报, 2019, 62(12): 1435-1447.
|
|
Shang ZM, Liu DG. Advances in aphid salivary protein research[J]. Acta Entomol Sin, 2019, 62(12): 1435-1447.
|
[8] |
张艳静, 李丹阳, 郭慧娟, 等. 蚜虫传播非持久性病毒的取食行为调控机制[J]. 植物保护学报, 2020, 47(5): 949-961.
|
|
Zhang YJ, Li DY, Guo HJ, et al. The regulatory mechanism of aphid feeding behaviors associated with the transmission of nonpersistent viruses[J]. J Plant Prot, 2020, 47(5): 949-961.
|
[9] |
Bos JIB, Prince D, Pitino M, et al. A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae(green peach aphid)[J]. PLoS Genet, 2010, 6(11): e1001216.
|
[10] |
Mutti NS, Louis J, Pappan LK, et al. A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant[J]. Proc Natl Acad Sci USA, 2008, 105(29): 9965-9969.
doi: 10.1073/pnas.0708958105
URL
|
[11] |
李雪峰, 范佳, 孙永伟, 等. 麦长管蚜唾液蛋白C002的基因克隆与RNA干扰研究[J]. 应用昆虫学报, 2014, 51(6): 1479-1487.
|
|
Li XF, Fan J, Sun YW, et al. Cloning and RNA interference analysis of the Sitobion avenae salivary protein C002 gene[J]. Chin J Appl Entomol, 2014, 51(6): 1479-1487.
|
[12] |
Escudero-Martinez C, Rodriguez PA, Liu S, et al. An aphid effector promotes barley susceptibility through suppression of defence gene expression[J]. J Exp Bot, 2020, 71(9): 2796-2807.
doi: 10.1093/jxb/eraa043
pmid: 31989174
|
[13] |
Carolan JC, Fitzroy CIJ, Ashton PD, et al. The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry[J]. Proteomics, 2009, 9(9): 2457-2467.
doi: 10.1002/pmic.200800692
pmid: 19402045
|
[14] |
Pitino M, Hogenhout SA. Aphid protein effectors promote aphid colonization in a plant species-specific manner[J]. Mol Plant Microbe Interact, 2013, 26(1): 130-139.
doi: 10.1094/MPMI-07-12-0172-FI
URL
|
[15] |
Coleman AD, Wouters RHM, Mugford ST, et al. Persistence and transgenerational effect of plant-mediated RNAi in aphids[J]. J Exp Bot, 2015, 66(2): 541-548.
doi: 10.1093/jxb/eru450
pmid: 25403918
|
[16] |
Liang Y, Gao XW. The cuticle protein gene MPCP4 of Myzus persicae(Homoptera: Aphididae)plays a critical role in cucumber mosaic virus acquisition[J]. J Econ Entomol, 2017, 110(3): 848-853.
doi: 10.1093/jee/tox025
pmid: 28334092
|
[17] |
Powell G, Pirone T, Hardie J. Aphid stylet activities during potyvirus acquisition from plants and an in vitro system that correlate with subsequent transmission[J]. Eur J Plant Pathol, 1995, 101(4): 411-420.
doi: 10.1007/BF01874855
URL
|
[18] |
Thongmeearkom P, Ford R, Jedlinski H. Aphid transmission of maize dwarf mosaic virus strains[J]. Phytopathology, 1976, 66(3): 332-335.
doi: 10.1094/Phyto-66-332
URL
|
[19] |
Hong H, Wang CL, Huang Y, et al. Antiviral RISC mainly targets viral mRNA but not genomic RNA of tospovirus[J]. PLoS Pathog, 2021, 17(7): e1009757.
|
[20] |
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method[J]. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262
pmid: 11846609
|
[21] |
孙靖雯, 张海燕. 不同寄主植物对桃蚜生长繁殖的影响[J]. 黑龙江农业科学, 2020(1): 83-86.
|
|
Sun JW, Zhang HY. Effects of different host plants on the growth and reproduction of peach aphid[J]. Heilongjiang Agric Sci, 2020(1): 83-86.
|
[22] |
Jayasinghe WH, Akhter MS, Nakahara K, et al. Effect of aphid biology and morphology on plant virus transmission[J]. Pest Manag Sci, 2022, 78(2): 416-427.
doi: 10.1002/ps.v78.2
URL
|
[23] |
Ng JCK, Perry KL. Transmission of plant viruses by aphid vectors[J]. Mol Plant Pathol, 2004, 5(5): 505-511.
doi: 10.1111/j.1364-3703.2004.00240.x
pmid: 20565624
|
[24] |
Qi YH, He YJ, Wang X, et al. Physical contact transmission of Cucumber green mottle mosaic virus by Myzus persicae[J]. PLoS One, 2021, 16(6): e0252856.
|
[25] |
Ray S, Casteel CL. Effector-mediated plant-virus-vector interactions[J]. Plant Cell, 2022, 34(5): 1514-1531.
doi: 10.1093/plcell/koac058
URL
|
[26] |
Huang HJ, Ye ZX, Lu G, et al. Identification of salivary proteins in the whitefly Bemisia tabaci by transcriptomic and LC-MS/MS analyses[J]. Insect Sci, 2021, 28(5): 1369-1381.
doi: 10.1111/ins.v28.5
URL
|
[27] |
Guo HJ, Zhang YJ, Li BY, et al. Salivary carbonic anhydrase II in winged aphid morph facilitates plant infection by viruses[J]. Proc Natl Acad Sci USA, 2023, 120(14): e2222040120.
|
[28] |
Huo Y, Zhao J, Meng XY, et al. Laodelphax striatellus saliva mucin enables the formation of stylet sheathes to facilitate its feeding and rice stripe virus transmission[J]. Pest Manag Sci, 2022, 78(8): 3498-3507.
doi: 10.1002/ps.v78.8
URL
|
[29] |
Mugford ST, Barclay E, Drurey C, et al. An immuno-suppressive aphid saliva protein is delivered into the cytosol of plant mesophyll cells during feeding[J]. Mol Plant Microbe Interact, 2016, 29(11): 854-861.
doi: 10.1094/MPMI-08-16-0168-R
URL
|
[30] |
Mauck KE, Kenney J, Chesnais Q. Progress and challenges in identifying molecular mechanisms underlying host and vector manipulation by plant viruses[J]. Curr Opin Insect Sci, 2019, 33: 7-18.
doi: S2214-5745(18)30082-8
pmid: 31358199
|
[31] |
Li H, Liu XX, Liu XM, et al. Host plant infection by soybean mosaic virus reduces the fitness of its vector, Aphis glycines(Hemiptera: Aphididae)[J]. J Econ Entomol, 2018, 111(5): 2017-2023.
doi: 10.1093/jee/toy165
URL
|
[32] |
陈茜, 刘英杰, 董勇浩, 等. 黄瓜花叶病毒侵染烟草对烟蚜生长发育、取食和选择行为的影响[J]. 中国农业科学, 2021, 54(8): 1673-1683.
doi: 10.3864/j.issn.0578-1752.2021.08.008
|
|
Chen Q, Liu YJ, Dong YH, et al. Effects of CMV-infected tobacco on the performance, feeding and host selection behavior of Myzus persicae[J]. Sci Agric Sin, 2021, 54(8): 1673-1683.
|
[33] |
Shi XB, Deng J, Zhang Z, et al. Initial ingestion of CMV-infected plants reduces subsequent aphid performance[J]. Arthropod Plant Interact, 2021, 15(2): 153-160.
doi: 10.1007/s11829-021-09804-w
|
[34] |
Donaldson JR, Gratton C. Antagonistic effects of soybean viruses on soybean aphid performance[J]. Environ Entomol, 2007, 36(4): 918-925.
doi: 10.1603/0046-225x(2007)36[918:aeosvo]2.0.co;2
pmid: 17716484
|
[35] |
Blanc S, Drucker M, Uzest M. Localizing viruses in their insect vectors[J]. Annu Rev Phytopathol, 2014, 52: 403-425.
doi: 10.1146/annurev-phyto-102313-045920
pmid: 24996011
|