生物技术通报 ›› 2024, Vol. 40 ›› Issue (5): 1-12.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1179
• 综述与专论 • 下一篇
收稿日期:
2023-12-13
出版日期:
2024-05-26
发布日期:
2024-06-13
通讯作者:
陈凤毛,男,博士,教授,研究方向:森林保护学;E-mail: cfengmao@njfu.edu.cn作者简介:
王立超,男,博士研究生,研究方向:森林保护学;E-mail: Lichaowang@njfu.edu.cn
WANG Li-chao(), LI Huan, SHENG Ruo-cheng, LI Min, CHEN Feng-mao()
Received:
2023-12-13
Published:
2024-05-26
Online:
2024-06-13
摘要:
赖氨酸乙酰化修饰作为生物体内一种保守的蛋白翻译后修饰,参与多种生物学过程。大量的医学和植物病理学研究指出,乙酰化修饰在动物疾病和植物病害发生过程中发挥重要的调控作用。本文根据前人的研究进展,就乙酰化修饰参与植物病原物的致病过程,主要包括乙酰化修饰在调控病原物的生长发育和致病力,寄主植物的抗性以及病原物与寄主植物之间的互作等三方面内容阐述乙酰化修饰在植物病原物中的作用,旨在了解乙酰化修饰在病原物致病过程中发挥的作用,以期为病原物的防控提供新思路和新理论。
王立超, 李欢, 盛若成, 李敏, 陈凤毛. 乙酰化修饰在植物病原物致病过程中的作用[J]. 生物技术通报, 2024, 40(5): 1-12.
WANG Li-chao, LI Huan, SHENG Ruo-cheng, LI Min, CHEN Feng-mao. Role of Acetylation in the Pathogenic Process of Plant Pathogens[J]. Biotechnology Bulletin, 2024, 40(5): 1-12.
病原菌 Species | 菌株 Strain | 乙酰化位点 Acetylated sites | 乙酰化蛋白 Acetylated proteins | 与致病力相关 Relevant to pathogenicity | 年份 Year | 参考文献 Reference |
---|---|---|---|---|---|---|
禾谷镰刀菌 F. graminearum | PH-1 | 577 | 364 | Yes | 2016 | [ |
PH-1 | 2 400 | 1 642 | Yes | 2019 | [ | |
Fggcn5 mutant | 2 352 | 1 599 | Yes | 2019 | [ | |
稻瘟菌 M. oryzae | Wild-type | 1 501 | 660 | Yes | 2018 | [ |
GCN5 overexpression | 1 509 | 666 | Yes | 2018 | [ | |
Vegetative hyphae | 2 720 | 1 269 | Yes | 2017 | [ | |
大豆疫霉P. sojae | Wild-type | 2 197 | 1 150 | Yes | 2016 | [ |
灰葡萄孢B. cinerea | B05.10 | 1 582 | 954 | Yes | 2016 | [ |
梨火疫病菌 E. amylovora | Ea273 | 61 | 46 | Yes | 2013 | [ |
Ea1189 | 100 | 67 | Yes | 2013 | [ | |
板栗疫病菌 C. parasitica | EP155 | 550 | 260 | / | 2023 | [ |
EP155/CHV1-EP713 | 554 | 250 | / | 2023 | [ | |
核桃溃疡病原菌B. nigrifluens | LMG 2694 | 1 866 | 737 | Yes | 2020 | [ |
表1 植物病原物乙酰化组学研究统计
Table 1 Statistics of acetylome studies in plant pathogens
病原菌 Species | 菌株 Strain | 乙酰化位点 Acetylated sites | 乙酰化蛋白 Acetylated proteins | 与致病力相关 Relevant to pathogenicity | 年份 Year | 参考文献 Reference |
---|---|---|---|---|---|---|
禾谷镰刀菌 F. graminearum | PH-1 | 577 | 364 | Yes | 2016 | [ |
PH-1 | 2 400 | 1 642 | Yes | 2019 | [ | |
Fggcn5 mutant | 2 352 | 1 599 | Yes | 2019 | [ | |
稻瘟菌 M. oryzae | Wild-type | 1 501 | 660 | Yes | 2018 | [ |
GCN5 overexpression | 1 509 | 666 | Yes | 2018 | [ | |
Vegetative hyphae | 2 720 | 1 269 | Yes | 2017 | [ | |
大豆疫霉P. sojae | Wild-type | 2 197 | 1 150 | Yes | 2016 | [ |
灰葡萄孢B. cinerea | B05.10 | 1 582 | 954 | Yes | 2016 | [ |
梨火疫病菌 E. amylovora | Ea273 | 61 | 46 | Yes | 2013 | [ |
Ea1189 | 100 | 67 | Yes | 2013 | [ | |
板栗疫病菌 C. parasitica | EP155 | 550 | 260 | / | 2023 | [ |
EP155/CHV1-EP713 | 554 | 250 | / | 2023 | [ | |
核桃溃疡病原菌B. nigrifluens | LMG 2694 | 1 866 | 737 | Yes | 2020 | [ |
病原物 Pathogen | 去乙酰化酶种类 Type of deacetylase | 菌丝生长 Mycelial growth | 菌落形态 Colony morphology | 产孢量 Conidial production | 耐受性 Tolerance | 致病力 Pathogenicity | 参考文献 Reference |
---|---|---|---|---|---|---|---|
稻瘟菌 M. oryzae | MoRpd3 | N | / | D | / | D | [ |
MoHos2 | D | N | D | / | D | [ | |
MoHda1 | D | N | D | / | D | [ | |
链格孢 A. alternata | AaRap3 | D | Y | D | N | D | [ |
AaHos2 | D | N | D | D | D | [ | |
AaHos3 | N | N | N | N | N | [ | |
AaHda1 | N | N | N | N | N | [ | |
AaHst2 | N | N | N | N | D | [ | |
AaSirt2 | N | N | N | N | N | [ | |
灰葡萄孢B. cinerea | BcRpd3 | D | / | N | D | D | [ |
果生炭疽菌C. fructicola | Cfsnt2 | D | Y | D | D | D | [ |
表2 植物病原物去乙酰化酶基因敲除或干扰对生长发育和致病力的影响统计
Table 2 Statistics of the effects of deacetylase gene knockout or interference on the growth, development and pathogenicity in plant pathogens
病原物 Pathogen | 去乙酰化酶种类 Type of deacetylase | 菌丝生长 Mycelial growth | 菌落形态 Colony morphology | 产孢量 Conidial production | 耐受性 Tolerance | 致病力 Pathogenicity | 参考文献 Reference |
---|---|---|---|---|---|---|---|
稻瘟菌 M. oryzae | MoRpd3 | N | / | D | / | D | [ |
MoHos2 | D | N | D | / | D | [ | |
MoHda1 | D | N | D | / | D | [ | |
链格孢 A. alternata | AaRap3 | D | Y | D | N | D | [ |
AaHos2 | D | N | D | D | D | [ | |
AaHos3 | N | N | N | N | N | [ | |
AaHda1 | N | N | N | N | N | [ | |
AaHst2 | N | N | N | N | D | [ | |
AaSirt2 | N | N | N | N | N | [ | |
灰葡萄孢B. cinerea | BcRpd3 | D | / | N | D | D | [ |
果生炭疽菌C. fructicola | Cfsnt2 | D | Y | D | D | D | [ |
病原物 Pathogen | 乙酰转移酶种类 Types of acetyltransferase | 菌丝生长 Mycelial growth | 菌落形态 Colony morphology | 产孢量 Conidial production | 耐受性 Tolerance | 致病力 Pathogenicity | 参考文献 Reference |
---|---|---|---|---|---|---|---|
稻瘟菌 M. oryzae | MoHat1 | D | / | D | I | D | [ |
MoGcn5 | D | / | I | D | D | [ | |
MoSas3 | D | Y | D | / | D | [ | |
禾谷镰刀菌 F. graminearum | FgHat1 | N | N | N | N | N | [ |
FgHat2 | D | / | D | D | D | [ | |
FgGcn5 | D | Y | D | D | D | [ | |
FgRtt109 | D | Y | D | D | D | [ | |
FgSas2 | D | Y | D | N | N | [ | |
FgSas3 | D | Y | D | D | D | [ | |
FgElp3 | D | Y | I | / | D | [ | |
FgHpa2 | D | N | N | / | N | [ | |
链格孢 A. alternata | AaSas2 | N | N | N | N | N | [ |
AaSas3 | D | N | D | D | D | [ | |
AaGcn5 | D | Y | D | D | D | [ | |
AaRtt109 | D | N | D | D | D | [ | |
AaElp3 | D | D | D | D | D | [ | |
AaEsa1 | N | N | N | N | / | [ | |
AaNat3 | D | Y | D | D | D | [ | |
灰葡萄孢B. cinerea | BcSas2 | D | / | D | D | D | [ |
果生炭疽菌C. fructicola | CfGcn5 | D | Y | D | / | D | [ |
尖孢镰刀菌F. oxysporum | FocGcn5 | D | / | D | / | D | [ |
玉米黑粉病菌U. maydis | UmGcn5 | D | Y | / | D | D | [ |
大豆疫霉P. sojae | PsGcn5 | N | / | / | D | D | [ |
表3 植物病原物乙酰转移酶基因敲除或干扰后对生长发育和致病力功能影响的统计
Table 3 Statistics of the effects of acetyltransferase genes knockout or interference on the growth, development and pathogenicity in plant pathogens
病原物 Pathogen | 乙酰转移酶种类 Types of acetyltransferase | 菌丝生长 Mycelial growth | 菌落形态 Colony morphology | 产孢量 Conidial production | 耐受性 Tolerance | 致病力 Pathogenicity | 参考文献 Reference |
---|---|---|---|---|---|---|---|
稻瘟菌 M. oryzae | MoHat1 | D | / | D | I | D | [ |
MoGcn5 | D | / | I | D | D | [ | |
MoSas3 | D | Y | D | / | D | [ | |
禾谷镰刀菌 F. graminearum | FgHat1 | N | N | N | N | N | [ |
FgHat2 | D | / | D | D | D | [ | |
FgGcn5 | D | Y | D | D | D | [ | |
FgRtt109 | D | Y | D | D | D | [ | |
FgSas2 | D | Y | D | N | N | [ | |
FgSas3 | D | Y | D | D | D | [ | |
FgElp3 | D | Y | I | / | D | [ | |
FgHpa2 | D | N | N | / | N | [ | |
链格孢 A. alternata | AaSas2 | N | N | N | N | N | [ |
AaSas3 | D | N | D | D | D | [ | |
AaGcn5 | D | Y | D | D | D | [ | |
AaRtt109 | D | N | D | D | D | [ | |
AaElp3 | D | D | D | D | D | [ | |
AaEsa1 | N | N | N | N | / | [ | |
AaNat3 | D | Y | D | D | D | [ | |
灰葡萄孢B. cinerea | BcSas2 | D | / | D | D | D | [ |
果生炭疽菌C. fructicola | CfGcn5 | D | Y | D | / | D | [ |
尖孢镰刀菌F. oxysporum | FocGcn5 | D | / | D | / | D | [ |
玉米黑粉病菌U. maydis | UmGcn5 | D | Y | / | D | D | [ |
大豆疫霉P. sojae | PsGcn5 | N | / | / | D | D | [ |
蛋白 Protein | 寄主 Host | 基因Gene | 组蛋白乙酰化水平变化 Changes in histone acetylation level | 水杨酸含量变化 Changes in salicylic acid content | 活性氧含量变化 Changes in reactive oxygen species content | 抗性基因表达量变化 Changes in expression levels of resistance genes | 抗病性变化 Changes in resistance | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|
去乙酰化酶 Deacetylases | 拟南芥A. thaliana | AtHDAC6 a(shi5) | I | I | I | I | I | [ |
AtHDAC19 a | / | I | / | I | I/D | [ | ||
水稻O. sativa | OsHDT701 a | I | / | I | I | I | [ | |
乙酰转移酶 Acetyltransferases | 木薯M. esculenta | MeHAM1 b | I | I | I | I | I | [ |
小麦T. aestivum | TgHAG1 b | I | I | I | / | I | [ | |
大豆Glycine max | GmTAP b | D | / | / | / | I | [ |
表4 植物乙酰转移酶或去乙酰化酶基因对植物防御反应的影响
Table 4 Effects of acetyltransferase or deacetylase genes on plant defense responses
蛋白 Protein | 寄主 Host | 基因Gene | 组蛋白乙酰化水平变化 Changes in histone acetylation level | 水杨酸含量变化 Changes in salicylic acid content | 活性氧含量变化 Changes in reactive oxygen species content | 抗性基因表达量变化 Changes in expression levels of resistance genes | 抗病性变化 Changes in resistance | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|
去乙酰化酶 Deacetylases | 拟南芥A. thaliana | AtHDAC6 a(shi5) | I | I | I | I | I | [ |
AtHDAC19 a | / | I | / | I | I/D | [ | ||
水稻O. sativa | OsHDT701 a | I | / | I | I | I | [ | |
乙酰转移酶 Acetyltransferases | 木薯M. esculenta | MeHAM1 b | I | I | I | I | I | [ |
小麦T. aestivum | TgHAG1 b | I | I | I | / | I | [ | |
大豆Glycine max | GmTAP b | D | / | / | / | I | [ |
[1] | Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis[J]. Proc Natl Acad Sci USA, 1964, 51(5): 786-794. |
[2] | Narita T, Weinert BT, Choudhary C. Functions and mechanisms of non-histone protein acetylation[J]. Nat Rev Mol Cell Biol, 2019, 20(3): 156-174. |
[3] | Xia C, Tao Y, Li MS, et al. Protein acetylation and deacetylation: an important regulatory modification in gene transcription(Review)[J]. Exp Ther Med, 2020, 20(4): 2923-2940. |
[4] | Liu YX, Yang H, Liu XC, et al. Protein acetylation: a novel modus of obesity regulation[J]. J Mol Med, 2021, 99(9): 1221-1235. |
[5] |
Shahbazian MD, Grunstein M. Functions of site-specific histone acetylation and deacetylation[J]. Annu Rev Biochem, 2007, 76: 75-100.
pmid: 17362198 |
[6] |
Lundby A, Lage K, Weinert BT, et al. Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns[J]. Cell Rep, 2012, 2(2): 419-431.
doi: 10.1016/j.celrep.2012.07.006 pmid: 22902405 |
[7] |
Zhang YM, Song LM, Liang WX, et al. Comprehensive profiling of lysine acetylproteome analysis reveals diverse functions of lysine acetylation in common wheat[J]. Sci Rep, 2016, 6: 21069.
doi: 10.1038/srep21069 pmid: 26875666 |
[8] | Zhou SY, Yang QQ, Yin CF, et al. Systematic analysis of the lysine acetylome in Fusarium graminearum[J]. BMC Genomics, 2016, 17(1): 1019. |
[9] | Zhou SY, Wu CL. Comparative acetylome analysis reveals the potential roles of lysine acetylation for DON biosynthesis in Fusarium graminearum[J]. BMC Genomics, 2019, 20(1): 841. |
[10] | Liang ML, Zhang SL, Dong LH, et al. Label-free quantitative proteomics of lysine acetylome identifies substrates of Gcn5 in Magnaporthe oryzae autophagy and epigenetic regulation[J]. mSystems, 2018, 3(6): e00270-e00218. |
[11] |
Sun XM, Li ZG, Liu H, et al. Large-scale identification of lysine acetylated proteins in vegetative hyphae of the rice blast fungus[J]. Sci Rep, 2017, 7(1): 15316.
doi: 10.1038/s41598-017-15655-4 pmid: 29127393 |
[12] | Li JT, Gao MM, Gabriel DW, et al. Secretome-wide analysis of lysine acetylation in Fusarium oxysporum f. sp. lycopersici provides novel insights into infection-related proteins[J]. Front Microbiol, 2020, 11: 559440. |
[13] | Li DL, Lv BN, Tan LL, et al. Acetylome analysis reveals the involvement of lysine acetylation in diverse biological processes in Phytophthora sojae[J]. Sci Rep, 2016, 6: 29897. |
[14] | Lv BN, Yang QQ, Li DL, et al. Proteome-wide analysis of lysine acetylation in the plant pathogen Botrytis cinerea[J]. Sci Rep, 2016, 6: 29313. |
[15] | Wu X, Vellaichamy A, Wang DP, et al. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics[J]. J Proteomics, 2013, 79: 60-71. |
[16] |
Li R, Chen FY, Li SC, et al. Comparative acetylomic analysis reveals differentially acetylated proteins regulating fungal metabolism in hypovirus-infected chestnut blight fungus[J]. Mol Plant Pathol, 2023, 24(9): 1126-1138.
doi: 10.1111/mpp.13358 pmid: 37278715 |
[17] | Li Y, Xue H, Bian DR, et al. Acetylome analysis of lysine acetylation in the plant pathogenic bacterium Brenneria nigrifluens[J]. Microbiology Open, 2020, 9(1): e00952. |
[18] | 左荣芳. 组蛋白乙酰转移酶MoHat1及五个bZIP转录因子在稻瘟病菌中的功能研究[D]. 南京: 南京农业大学, 2014. |
Zuo RF. Functional analysis of the histone acetyltransferase Mohat1 and five bzip transcription factor in Magnaporthe oryzae[D]. Nanjing: Nanjing Agricultural University, 2014. | |
[19] | Zhang SL, Liang ML, Naqvi NI, et al. Phototrophy and starvation-based induction of autophagy upon removal of Gcn5-catalyzed acetylation of Atg7 in Magnaporthe oryzae[J]. Autophagy, 2017, 13(8): 1318-1330. |
[20] |
Dubey A, Lee J, Kwon S, et al. A MYST family histone acetyltransferase, MoSAS3, is required for development and pathogenicity in the rice blast fungus[J]. Mol Plant Pathol, 2019, 20(11): 1491-1505.
doi: 10.1111/mpp.12856 pmid: 31364260 |
[21] | Lee SH, Farh MEA, Lee J, et al. A histone deacetylase, Magnaporthe oryzae RPD3, regulates reproduction and pathogenic development in the rice blast fungus[J]. mBio, 2021, 12(6): e0260021. |
[22] |
Lee J, Lee JJ, Jeon J. A histone deacetylase, MoHOS2 regulates asexual development and virulence in the rice blast fungus[J]. J Microbiol, 2019, 57(12): 1115-1125.
doi: 10.1007/s12275-019-9363-5 pmid: 31758396 |
[23] |
Kim T, Lee SH, Oh YT, et al. A histone deacetylase, MoHDA1 regulates asexual development and virulence in the rice blast fungus[J]. Plant Pathol J, 2020, 36(4): 314-322.
doi: 10.5423/PPJ.OA.06.2020.0099 pmid: 32788890 |
[24] | 付显惠, 沈启芳, 黄盼盼, 等. 禾谷镰刀菌组蛋白乙酰转移酶FgHat1在DON毒素生物合成中的功能[J]. 植物病理学报, 2022, 52(2): 145-155. |
Fu XH, Shen QF, Huang PP, et al. The histone acetyltransferase FgHat1 is important for DON biosynthesis in Fusarium graminearum[J]. Acta Phytopathol Sin, 2022, 52(2): 145-155. | |
[25] | Lü WY, Yang N, Xu Z, et al. FgHAT2 is involved in regulating vegetative growth, conidiation, DNA damage repair, DON production and virulence in Fusarium graminearum[J]. J Integr Agric, 2020, 19(7): 1813-1824. |
[26] | Kong XJ, van Diepeningen AD, van der Lee TAJ, et al. The Fusarium graminearum histone acetyltransferases are important for morphogenesis, DON biosynthesis, and pathogenicity[J]. Front Microbiol, 2018, 9: 654. |
[27] | 吴春兰. 禾谷镰刀菌组蛋白乙酰转移酶基因功能研究[D]. 杨凌: 西北农林科技大学, 2017. |
Wu CL. Functional analysis of histone acetyltransferases genes in Fusarium graminearum[D]. Yangling: Northwest A & F University, 2017. | |
[28] | Ma HJ, Li L, Gai YP, et al. Histone acetyltransferases and deacetylases are required for virulence, conidiation, DNA damage repair, and multiple stresses resistance of Alternaria alternata[J]. Front Microbiol, 2021, 12: 783633. |
[29] |
Zhang N, Yang ZZ, Zhang ZH, et al. BcRPD3-mediated histone deacetylation is involved in growth and pathogenicity of Botrytis cinerea[J]. Front Microbiol, 2020, 11: 1832.
doi: 10.3389/fmicb.2020.01832 pmid: 32849432 |
[30] | Wang GY, Song LM, Bai TT, et al. BcSas2-mediated histone H4K16 acetylation is critical for virulence and oxidative stress response of Botrytis cinerea[J]. Mol Plant Microbe Interact, 2020, 33(10): 1242-1251. |
[31] | Zhang SP, Guo Y, Chen SQ, et al. The histone acetyltransferase CfGcn5 regulates growth, development, and pathogenicity in the anthracnose fungus Colletotrichum fructicola on the tea-oil tree[J]. Front Microbiol, 2021, 12: 680415. |
[32] |
陈振宏, 李河, 陈嘉怡, 等. 组蛋白去乙酰化酶 CfSnt2 调控果生刺盘孢生长发育和致病力[J]. 菌物学报, 2022, 41(6): 926-938.
doi: 10.13346/j.mycosystema.210364 |
Chen ZH, Li H, Chen JY, et al. Histone deacetylase CfSnt2 regulates the growth, development and pathogenicity of Colletotrichum fructicola[J]. Mycosystema, 2022, 41(6): 926-938. | |
[33] | Liu JJ, An B, Luo HL, et al. The histone acetyltransferase FocGCN5 regulates growth, conidiation, and pathogenicity of the banana wilt disease causal agent Fusarium oxysporum f. sp. cubense tropical race 4[J]. Res Microbiol, 2022, 173(3): 103902. |
[34] |
González-Prieto JM, Rosas-Quijano R, Domínguez A, et al. The UmGcn5 gene encoding histone acetyltransferase from Ustilago maydis is involved in dimorphism and virulence[J]. Fungal Genet Biol, 2014, 71: 86-95.
doi: 10.1016/j.fgb.2014.09.002 pmid: 25242418 |
[35] | 李毛毛. 大豆疫霉组蛋白乙酰转移本科相关基因PsGCN5的克隆与功能分析[D]. 合肥: 安徽农业大学, 2014. |
Li MM. Clone and functional analysis of histone acetyltransferase gene PsGCN5 in Phytophthora sojae[D]. Hefei: Anhui Agricultural University, 2014. | |
[36] | Yin ZY, Chen C, Yang J, et al. Histone acetyltransferase MoHat1 acetylates autophagy-related proteins MoAtg3 and MoAtg9 to orchestrate functional appressorium formation and pathogenicity in Magnaporthe oryzae[J]. Autophagy, 2019, 15(7): 1234-1257. |
[37] |
Chen Y, Wang J, Yang N, et al. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation[J]. Nat Commun, 2018, 9(1): 3429.
doi: 10.1038/s41467-018-05683-7 pmid: 30143616 |
[38] |
Gu Q, Wang YJ, Zhao XZ, et al. Inhibition of histone acetyltransferase GCN5 by a transcription factor FgPacC controls fungal adaption to host-derived iron stress[J]. Nucleic Acids Res, 2022, 50(11): 6190-6210.
doi: 10.1093/nar/gkac498 pmid: 35687128 |
[39] | Jiang H, Xia AL, Ye M, et al. Opposing functions of Fng1 and the Rpd3 HDAC complex in H4 acetylation in Fusarium graminearum[J]. PLoS Genet, 2020, 16(11): e1009185. |
[40] | Li JT, Ma XY, Wang CY, et al. Acetylation of a fungal effector that translocates host PR1 facilitates virulence[J]. eLife, 2022, 11: e82628. |
[41] | Zhang N, Lv FJ, Qiu FH, et al. Pathogenic fungi neutralize plant-derived ROS via Srpk1 deacetylation[J]. EMBO J, 2023, 42(9): e112634. |
[42] | Yang QQ, Yang JG, Wang YM, et al. Broad-spectrum chemicals block ROS detoxification to prevent plant fungal invasion[J]. Curr Biol, 2022, 32(18): 3886-3897.e6. |
[43] | Xu QT, Wang YJ, Chen ZT, et al. ROS-stimulated protein lysine acetylation is required for crown root development in rice[J]. J Adv Res, 2023, 48: 33-46. |
[44] | Guo YL, Tan YQ, Qu MH, et al. OsWR2 recruits HDA704 to regulate the deacetylation of H4K8ac in the promoter of OsABI5 in response to drought stress[J]. J Integr Plant Biol, 2023, 65(7): 1651-1669. |
[45] | An CP, Deng L, Zhai HW, et al. Regulation of jasmonate signaling by reversible acetylation of TOPLESS in Arabidopsis[J]. Mol Plant, 2022, 15(8): 1329-1346. |
[46] | Wang YZ, Hu Q, Wu ZJ, et al. HISTONE DEACETYLASE 6 represses pathogen defence responses in Arabidopsis thaliana[J]. Plant Cell Environ, 2017, 40(12): 2972-2986. |
[47] | Zhu ZQ, An FY, Feng Y, et al. Derepression of ethylene-stabilized transcription factors(EIN3/EIL1)mediates jasmonate and ethylene signaling synergy in Arabidopsis[J]. Proc Natl Acad Sci USA, 2011, 108(30): 12539-12544. |
[48] |
Wu ZJ, He L, Jin Y, et al. HISTONE DEACETYLASE 6 suppresses salicylic acid biosynthesis to repress autoimmunity[J]. Plant Physiol, 2021, 187(4): 2592-2607.
doi: 10.1093/plphys/kiab408 pmid: 34618093 |
[49] |
Glazebrook J. Genes controlling expression of defense responses in Arabidopsis—2001 status[J]. Curr Opin Plant Biol, 2001, 4(4): 301-308.
doi: 10.1016/s1369-5266(00)00177-1 pmid: 11418339 |
[50] | Choi SM, Song HR, Han SK, et al. HDA19 is required for the repression of salicylic acid biosynthesis and salicylic acid-mediated defense responses in Arabidopsis[J]. Plant J, 2012, 71(1): 135-146. |
[51] | Kim KC, Lai ZB, Fan BF, et al. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense[J]. Plant Cell, 2008, 20(9): 2357-2371. |
[52] | van Wees SCM, Chang HS, Zhu T, et al. Characterization of the early response of Arabidopsis to Alternaria brassicicola infection using expression profiling[J]. Plant Physiol, 2003, 132(2): 606-617. |
[53] |
Lorenzo O, Piqueras R, Sánchez-Serrano JJ, et al. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense[J]. Plant Cell, 2003, 15(1): 165-178.
doi: 10.1105/tpc.007468 pmid: 12509529 |
[54] |
Berrocal-Lobo M, Molina A, Solano R. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi[J]. Plant J, 2002, 29(1): 23-32.
doi: 10.1046/j.1365-313x.2002.01191.x pmid: 12060224 |
[55] | 孙淑豪, 胡彦如, 余迪求. HDA19调控拟南芥对真菌Botrytis cineara的抗性反应[J]. 广西植物, 2017, 37(11): 1355-1367. |
Sun SH, Hu YR, Yu DQ. Regulation of HDA19 on resistance of Arabidopsis thaliana to Botrytis cineara[J]. Guihaia, 2017, 37(11): 1355-1367. | |
[56] | Ding B, Bellizzi MDR, Ning YS, et al. HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice[J]. Plant Cell, 2012, 24(9): 3783-3794. |
[57] | Zhao HP, Ge ZY, Zhou MM, et al. Histone acetyltransferase HAM1 interacts with molecular chaperone DNAJA2 and confers immune responses through salicylic acid biosynthetic genes in cassava[J]. Plant Cell Environ, 2023, 46(2): 635-649. |
[58] |
Song N, Lin JC, Liu XB, et al. Histone acetyltransferase TaHAG1 interacts with TaPLATZ5 to activate TaPAD4 expression and positively contributes to powdery mildew resistance in wheat[J]. New Phytol, 2022, 236(2): 590-607.
doi: 10.1111/nph.18372 pmid: 35832009 |
[59] | Gong C, Su HH, Li ZX, et al. Involvement of histone acetylation in tomato resistance to Ralstonia solanacearum[J]. Sci Hortic, 2021, 285: 110163. |
[60] | Li HY, Wang HN, Jing MF, et al. A Phytophthora effector recruits a host cytoplasmic transacetylase into nuclear speckles to enhance plant susceptibility[J]. eLife, 2018, 7: e40039. |
[61] | Zhang L, Wu YJ, Yu YA, et al. Acetylation of GhCaM7 enhances cotton resistance to Verticillium dahliae[J]. Plant J, 2023, 114(6): 1405-1424. |
[62] | Kong L, Qiu XF, Kang JG, et al. A Phytophthora effector manipulates host histone acetylation and reprograms defense gene expression to promote infection[J]. Curr Biol, 2017, 27(7): 981-991. |
[63] | Wang QQ, Han CZ, Ferreira AO, et al. Transcriptional programming and functional interactions within the Phytophthora sojae RXLR effector repertoire[J]. Plant Cell, 2011, 23(6): 2064-2086. |
[64] |
Chen XY, Duan YH, Qiao FG, et al. A secreted fungal effector suppresses rice immunity through host histone hypoacetylation[J]. New Phytol, 2022, 235(5): 1977-1994.
doi: 10.1111/nph.18265 pmid: 35592995 |
[65] |
Li W, Xiong YH, Lai LB, et al. The rice RNase P protein subunit Rpp30 confers broad-spectrum resistance to fungal and bacterial pathogens[J]. Plant Biotechnol J, 2021, 19(10): 1988-1999.
doi: 10.1111/pbi.13612 pmid: 33932077 |
[66] | Tasset C, Bernoux M, Jauneau A, et al. Autoacetylation of the Ralstonia solanacearum effector PopP2 targets a lysine residue essential for RRS1-R-mediated immunity in Arabidopsis[J]. PLoS Pathog, 2022, 18(3): e1010368. |
[67] | Cheong MS, Kirik A, Kim JG, et al. AvrBsT acetylates Arabidopsis ACIP1, a protein that associates with microtubules and is required for immunity[J]. PLoS Pathog, 2014, 10(2): e1003952. |
[68] | Lee AHY, Hurley B, Felsensteiner C, et al. A bacterial acetyltransferase destroys plant microtubule networks and blocks secretion[J]. PLoS Pathog, 2012, 8(2): e1002523. |
[69] |
Rufián JS, Lucía A, Macho AP, et al. Auto-acetylation on K289 is not essential for HopZ1a-mediated plant defense suppression[J]. Front Microbiol, 2015, 6: 684.
doi: 10.3389/fmicb.2015.00684 pmid: 26217317 |
[70] |
Lee J, Manning AJ, Wolfgeher D, et al. Acetylation of an NB-LRR plant immune-effector complex suppresses immunity[J]. Cell Rep, 2015, 13(8): 1670-1682.
doi: 10.1016/j.celrep.2015.10.029 pmid: 26586425 |
[71] | Choi S, Prokchorchik M, Lee H, et al. Direct acetylation of a conserved threonine of RIN4 by the bacterial effector HopZ5 or AvrBsT activates RPM1-dependent immunity in Arabidopsis[J]. Mol Plant, 2021, 14(11): 1951-1960. |
[72] |
Lawrence RJ, Earley K, Pontes O, et al. A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance[J]. Mol Cell, 2004, 13(4): 599-609.
doi: 10.1016/s1097-2765(04)00064-4 pmid: 14992728 |
[73] | Li H, Luan S. AtFKBP53 is a histone chaperone required for repression of ribosomal RNA gene expression in Arabidopsis[J]. Cell Res, 2010, 20(3): 357-366. |
[74] | Vijayapalani P, Hewezi T, Pontvianne F, et al. An effector from the cyst nematode Heterodera schachtii derepresses host rRNA genes by altering histone acetylation[J]. Plant Cell, 2018, 30(11): 2795-2812. |
[75] | Timmermann S, Lehrmann H, Polesskaya A, et al. Histone acetylation and disease[J]. Cell Mol Life Sci, 2001, 58(5): 728-736. |
[76] | Jiang N, Li WY, Jiang SL, et al. Acetylation in pathogenesis: revealing emerging mechanisms and therapeutic prospects[J]. Biomed Pharmacother, 2023, 167: 115519. |
[77] |
Sabnis RW. Novel histone acetyltransferase(HAT)inhibitors for treating diseases[J]. ACS Med Chem Lett, 2021, 12(8): 1198-1199.
doi: 10.1021/acsmedchemlett.1c00337 pmid: 34413940 |
[78] | Ho TCS, Chan AHY, Ganesan A. Thirty years of HDAC inhibitors: 2020 insight and hindsight[J]. J Med Chem, 2020, 63(21): 12460-12484. |
[79] |
Wurtele H, Tsao S, Lépine G, et al. Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy[J]. Nat Med, 2010, 16(7): 774-780.
doi: 10.1038/nm.2175 pmid: 20601951 |
[80] |
Vanagas L, Jeffers V, Bogado SS, et al. Toxoplasma histone acetylation remodelers as novel drug targets[J]. Expert Rev Anti Infect Ther, 2012, 10(10): 1189-1201.
doi: 10.1586/eri.12.100 pmid: 23199404 |
[1] | 郭倩倩, 杨倩倩, 宋丽敏, 梁文星. 植物病理学领域蛋白乙酰化修饰研究进展[J]. 生物技术通报, 2018, 34(2): 96-101. |
[2] | 吕斌娜,梁文星. 蛋白质乙酰化修饰研究进展[J]. 生物技术通报, 2015, 31(4): 166-174. |
[3] | 傅本重;刘丽;伍建榕;. 植物病原生物基因组测序进展[J]. , 2010, 0(09): 8-15. |
[4] | 王莉江;安成才;陈章良. 核糖体灭活蛋白在植物中的作用[J]. , 2000, 0(02): 1-4. |
[5] | 孙国凤. 抗真菌重组人参的田间实验获得成功[J]. , 1996, 0(06): 20-20. |
[6] | 孙国凤;. 抗病植物的开发[J]. , 1991, 0(03): 9-10. |
[7] | 李思经;. 工程化抗真菌病原体植株[J]. , 1991, 0(02): 26-27. |
[8] | 孙国凤;. 协和发酵公司开始G-CSF衍生物的临床试验[J]. , 1989, 0(06): 16-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||