生物技术通报 ›› 2024, Vol. 40 ›› Issue (10): 198-207.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0312
毛馨艺1,2,3,4(), 兰芸1,2,3,4, 张准1,2,3,4, 张叶卓1,2,3,4, 金琪1,2,3,4, 赵美棋1,2,3,4, 曾子柽1,2,3,4, 李晔1,2,3,4()
收稿日期:
2024-03-31
出版日期:
2024-10-26
发布日期:
2024-11-20
通讯作者:
李晔,女,博士,副教授,研究方向:细胞壁形成机制,物质的跨膜转运机制;E-mail: liye0223@bjfu.edu.cn作者简介:
毛馨艺,女,研究方向:细胞壁形成机制;E-mail: maoxinyi2003@bjfu.edu.cn
基金资助:
MAO Xin-yi1,2,3,4(), LAN Yun1,2,3,4, ZHANG Zhun1,2,3,4, ZHANG Ye-zhuo1,2,3,4, JIN Qi1,2,3,4, ZHAO Mei-qi1,2,3,4, ZENG Zi-cheng1,2,3,4, LI Ye1,2,3,4()
Received:
2024-03-31
Published:
2024-10-26
Online:
2024-11-20
摘要:
木质素(lignin)作为一种重要的可再生资源,主要集中在植物的次生细胞壁中,在植物的营养物质运输、机械支持和病原体防御等生理过程中发挥着关键作用。木质素的形成过程包括3个主要环节:单体的胞内合成、跨膜转运以及胞外聚合。深入探究木质素单体跨膜转运的分子机制,对揭示细胞壁形成分子机制及木材改良具有重要意义。基于此,本综述从转录组学、基因工程、点击化学、荧光显微成像、分子模拟等技术角度,对木质素单体跨膜转运的相关进展和最新技术进行了梳理和总结,阐述了木质素单体跨膜转运相关研究的新技术和存在的技术瓶颈,并对比分析了不同技术之间的优缺点,最后提出了木质素单体跨膜转运机制研究中仍存在的问题和面临的挑战。相信随着成像技术、结构生物学、人工智能等科技的飞速发展,将为进一步阐明木质素单体跨膜转运的分子机理提供有效的技术手段。期望本综述为木质素单体的相关研究提供新的思路和方法。
毛馨艺, 兰芸, 张准, 张叶卓, 金琪, 赵美棋, 曾子柽, 李晔. 木质素单体跨膜转运的技术研究进展[J]. 生物技术通报, 2024, 40(10): 198-207.
MAO Xin-yi, LAN Yun, ZHANG Zhun, ZHANG Ye-zhuo, JIN Qi, ZHAO Mei-qi, ZENG Zi-cheng, LI Ye. Advances in Technology for Transport of Monolignols across Membrane[J]. Biotechnology Bulletin, 2024, 40(10): 198-207.
图1 木质化过程 A:植物细胞在胞质溶胶中合成木质素单体;B:单体跨细胞膜向细胞壁转运;C:单体在胞外氧化还原酶的作用下氧化脱氢,聚合形成木质素大分子
Fig. 1 Process of lignification A: Plant cells synthesize monolignols in cytoplasm. B: Monolignols transport across cell membrane to cell wall. C: Under the action of extracellular oxidative enzymes, the monolignols dehydrogenate and polymerize to form lignin
图2 木质素单体跨膜转运相关研究技术示意图 A:转录组学;B:基因工程;C:点击化学;D:荧光显微成像技术;E:分子模拟(A图由Figdraw绘制)
Fig. 2 Schematic diagram of the research technologies related to the transport of monolignols across membrane A: Transcriptomics. B: Genetic engineering. C: Click chemistry. D: Fluorescent microscopy. E: Molecular simulation(A: By Figdraw)
技术 Technology | 原理 Principle | 优势 Advantage | 劣势 Disadvantage | 参考文献 Reference |
---|---|---|---|---|
转录组学 Transcriptomics | 检测细胞的基因表达情况,识别具有相似表达模式的基因,从整体水平上研究基因转录情况以及调控规律 | 根据不同细胞的转录谱表达,通过相关性分析可对潜在转运蛋白进行筛选,为研究木质素单体跨膜转运的分子机理提供有价值的信息,是进一步实现功能研究的基础 | 林木庞大的基因组为基因表达分析带来了挑战 | [ |
基因工程 Genetic engineering | 使用生物技术直接操纵有机体基因组,改变细胞的遗传物质,可以进行基因导入、敲除以及替换 | 可以获得蛋白定位和互作信息,为特定基因产物的功能分析提供直接证据,是研究相关转运蛋白的功能以及木质素单体跨膜转运分子机理的一个重要手段 | ABC转运蛋白的冗余性可能影响基因敲除实验的结果 | [ |
点击化学 Click chemistry | 利用细胞自身的生物代谢合成机制,将生物正交化学报告基团整合到目标生物分子中以达到标记目的 | 具基因标记的简单性、抗体标记的特异性以及小分子探针的多功能性;操作简单,几乎不改变标记对象的构象,对植物细胞毒害性小,并能高度还原木质素单体转运过程中的生物过程 | 植物细胞壁的存在增加了对标记类似物的代谢吸收难度,限制代谢标记效率 | [ |
荧光显微技术 Fluorescent microscopy | 木质素单体中存在苯环,能够产生自发荧光,苯环上的不同侧链以及环或侧链上不同位置取代会导致发色团的变化,据此可以识别不同类型的木质素及其单体 | 可以在不进行染色的情况下观察和分析样品,简化操作;可以追踪木质素单体在植物细胞中的动态变化 | 受自身分辨率、成像时间等限制,且木质素的复杂结构会对成像结果造成一定干扰 | [ |
分子模拟 Molecular simulation | 基于物理原理(量子力学和统计热力学),利用计算机构建原子水平的分子模型,进而研究分子结构和行为、分子的性质 | 相比于实验手段,可以在原子水平上提供详细信息,有助于理解单体跨膜以及与转运蛋白互作的动力学机制 | 模拟体系可能与细胞内真实的环境有差异,只能作为参考,不能完全反映木质素跨膜转运的真实状态 | [ |
表1 木质素单体跨膜转运的相关研究技术
Table 1 Technologies of related studies to the transport of monoligols across membrane
技术 Technology | 原理 Principle | 优势 Advantage | 劣势 Disadvantage | 参考文献 Reference |
---|---|---|---|---|
转录组学 Transcriptomics | 检测细胞的基因表达情况,识别具有相似表达模式的基因,从整体水平上研究基因转录情况以及调控规律 | 根据不同细胞的转录谱表达,通过相关性分析可对潜在转运蛋白进行筛选,为研究木质素单体跨膜转运的分子机理提供有价值的信息,是进一步实现功能研究的基础 | 林木庞大的基因组为基因表达分析带来了挑战 | [ |
基因工程 Genetic engineering | 使用生物技术直接操纵有机体基因组,改变细胞的遗传物质,可以进行基因导入、敲除以及替换 | 可以获得蛋白定位和互作信息,为特定基因产物的功能分析提供直接证据,是研究相关转运蛋白的功能以及木质素单体跨膜转运分子机理的一个重要手段 | ABC转运蛋白的冗余性可能影响基因敲除实验的结果 | [ |
点击化学 Click chemistry | 利用细胞自身的生物代谢合成机制,将生物正交化学报告基团整合到目标生物分子中以达到标记目的 | 具基因标记的简单性、抗体标记的特异性以及小分子探针的多功能性;操作简单,几乎不改变标记对象的构象,对植物细胞毒害性小,并能高度还原木质素单体转运过程中的生物过程 | 植物细胞壁的存在增加了对标记类似物的代谢吸收难度,限制代谢标记效率 | [ |
荧光显微技术 Fluorescent microscopy | 木质素单体中存在苯环,能够产生自发荧光,苯环上的不同侧链以及环或侧链上不同位置取代会导致发色团的变化,据此可以识别不同类型的木质素及其单体 | 可以在不进行染色的情况下观察和分析样品,简化操作;可以追踪木质素单体在植物细胞中的动态变化 | 受自身分辨率、成像时间等限制,且木质素的复杂结构会对成像结果造成一定干扰 | [ |
分子模拟 Molecular simulation | 基于物理原理(量子力学和统计热力学),利用计算机构建原子水平的分子模型,进而研究分子结构和行为、分子的性质 | 相比于实验手段,可以在原子水平上提供详细信息,有助于理解单体跨膜以及与转运蛋白互作的动力学机制 | 模拟体系可能与细胞内真实的环境有差异,只能作为参考,不能完全反映木质素跨膜转运的真实状态 | [ |
[1] | Dixon RA, Barros J. Lignin biosynthesis: old roads revisited and new roads explored[J]. Open Biol, 2019, 9(12): 190215. |
[2] | Vanholme R, De Meester B, Ralph J, et al. Lignin biosynthesis and its integration into metabolism[J]. Curr Opin Biotechnol, 2019, 56: 230-239. |
[3] | 孟泓君. 拟南芥ABCG36转运蛋白在木质素生物合成过程中的功能研究[D]. 重庆: 西南大学, 2019. |
Meng HJ. Funcution of ABCG36 transporter involved in lignin biosynthesis in Arabidopsis[D]. Chongqing: Southwest University, 2019. | |
[4] |
Bonawitz ND, Chapple C. The genetics of lignin biosynthesis: connecting genotype to phenotype[J]. Annu Rev Genet, 2010, 44: 337-363.
doi: 10.1146/annurev-genet-102209-163508 pmid: 20809799 |
[5] | Chen JC, Eraghi Kazzaz A, AlipoorMazandarani N, et al. Production of flocculants, adsorbents, and dispersants from lignin[J]. Molecules, 2018, 23(4): 868. |
[6] | 崔景慧. 糖基转移酶UGT72B1介导木质素合成和花发育的研究[D]. 北京: 清华大学, 2020. |
Cui JH. UGT72B1 is involved in lignin biosynthesis and flower development in Arabidopsis[D]. Beijing: Tsinghua University, 2020. | |
[7] | Gao YQ, Huang JQ, Reyt G, et al. A dirigent protein complex directs lignin polymerization and assembly of the root diffusion barrier[J]. Science, 2023, 382(6669): 464-471. |
[8] | Liu CJ. Deciphering the enigma of lignification: precursor transport, oxidation, and the topochemistry of lignin assembly[J]. Mol Plant, 2012, 5(2): 304-317. |
[9] | 薛永常, 李金花, 卢孟柱, 等. 木质素单体生物合成途径及其修订[J]. 林业科学, 2003, 39(6): 146-153. |
Xue YC, Li JH, Lu MZ, et al. The lignin subunits biosynthesis pathway and its rewriting[J]. Sci Silvae Sin, 2003, 39(6): 146-153. | |
[10] | 葛文佳, 辛建攀, 田如男. 植物苯丙烷代谢及其对重金属胁迫的响应研究进展[J]. 生物工程学报, 2023, 39(2): 425-445. |
Ge WJ, Xin JP, Tian RN. Phenylpropanoid pathway in plants and its role in response to heavy metal stress: a review[J]. Chin J Biotechnol, 2023, 39(2): 425-445. | |
[11] |
Kumar M, Campbell L, Turner S. Secondary cell walls: biosynthesis and manipulation[J]. J Exp Bot, 2016, 67(2): 515-531.
doi: 10.1093/jxb/erv533 pmid: 26663392 |
[12] | Xin AZ, Herburger K. Mini review: transport of hydrophobic polymers into the plant apoplast[J]. Front Plant Sci, 2021, 11: 590990. |
[13] | Miao YC, Liu CJ. ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes[J]. Proc Natl Acad Sci USA, 2010, 107(52): 22728-22733. |
[14] |
Alejandro S, Lee Y, Tohge T, et al. AtABCG29 is a monolignol transporter involved in lignin biosynthesis[J]. Curr Biol, 2012, 22(13): 1207-1212.
doi: 10.1016/j.cub.2012.04.064 pmid: 22704988 |
[15] | Sun N, Wang YQ, Kang JQ, et al. Exploring the role of the LkABCG36 transporter in lignin accumulation[J]. Plant Sci, 2024, 343: 112059. |
[16] |
Boija E, Lundquist A, Edwards K, et al. Evaluation of bilayer disks as plant cell membrane models in partition studies[J]. Anal Biochem, 2007, 364(2): 145-152.
pmid: 17391634 |
[17] |
Vermaas JV, Dixon RA, Chen F, et al. Passive membrane transport of lignin-related compounds[J]. Proc Natl Acad Sci USA, 2019, 116(46): 23117-23123.
doi: 10.1073/pnas.1904643116 pmid: 31659054 |
[18] | Perkins ML, Schuetz M, Unda F, et al. Monolignol export by diffusion down a polymerization-induced concentration gradient[J]. Plant Cell, 2022, 34(5): 2080-2095. |
[19] |
Tsuyama T, Kawai R, Shitan N, et al. Proton-dependent coniferin transport, a common major transport event in differentiating xylem tissue of woody plants[J]. Plant Physiol, 2013, 162(2): 918-926.
doi: 10.1104/pp.113.214957 pmid: 23585651 |
[20] |
Tsuyama T, Matsushita Y, Fukushima K, et al. Proton gradient-dependent transport of p-glucocoumaryl alcohol in differentiating xylem of woody plants[J]. Sci Rep, 2019, 9(1): 8900.
doi: 10.1038/s41598-019-45394-7 pmid: 31222148 |
[21] |
Väisänen E, Takahashi J, Obudulu O, et al. Hunting monolignol transporters: membrane proteomics and biochemical transport assays with membrane vesicles of Norway spruce[J]. J Exp Bot, 2020, 71(20): 6379-6395.
doi: 10.1093/jxb/eraa368 pmid: 32777074 |
[22] | Li X, Weng JK, Chapple C. Improvement of biomass through lignin modification[J]. Plant J, 2008, 54(4): 569-581. |
[23] |
熊兴泉, 张辉, 高利柱. 木质素的功能化与应用研究进展[J]. 应用化学, 2023, 40(6): 806-819.
doi: 10.19894/j.issn.1000-0518.220363 |
Xiong XQ, Zhang H, Gao LZ. Progress in chemical modification and application of lignin[J]. Chin J Appl Chem, 2023, 40(6): 806-819. | |
[24] | Lin L, Tu YF, Li ZY, et al. Synthesis and application of multifunctional lignin-modified cationic waterborne polyurethane in textiles[J]. Int J Biol Macromol, 2024, 262(Pt 1): 130063. |
[25] | 刘宽庆, 张以恒. 木质素的生物降解和生物利用[J/OL]. 合成生物学, 2023. http://kns.cnki.net/kcms/detail/10.1687.Q.20231103.0847.002.html. |
Liu KQ, Zhang YH. Biological degradation and utilization of lignin[J/OL]. Synth Biol J, 2023. http://kns.cnki.net/kcms/detail/10.1687.Q.20231103.0847.002.html. | |
[26] | 刘景芳, 李维林, 王莉, 等. 多组学技术及其在生命科学研究中应用概述[J]. 生物工程学报, 2022, 38(10): 3581-3593. |
Liu JF, Li WL, Wang L, et al. Multi-omics technology and its applications to life sciences: a review[J]. Chin J Biotechnol, 2022, 38(10): 3581-3593. | |
[27] | 郭圆圆, 孙雅如, 张和平. 微生物转录组学技术研究进展[J]. 生物工程学报, 2022, 38(10): 3606-3615. |
Guo YY, Sun YR, Zhang HP. Advances in microbial transcriptomics techniques[J]. Chin J Biotechnol, 2022, 38(10): 3606-3615. | |
[28] | Whetten R, Sun YH, Zhang Y, et al. Functional genomics and cell wall biosynthesis in loblolly pine[J]. Plant Mol Biol, 2001, 47(1/2): 275-291. |
[29] |
Ehlting J, Mattheus N, Aeschliman DS, et al. Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation[J]. Plant J, 2005, 42(5): 618-640.
doi: 10.1111/j.1365-313X.2005.02403.x pmid: 15918878 |
[30] |
Takeuchi M, Kegasa T, Watanabe A, et al. Expression analysis of transporter genes for screening candidate monolignol transporters using Arabidopsis thaliana cell suspensions during tracheary element differentiation[J]. J Plant Res, 2018, 131(2): 297-305.
doi: 10.1007/s10265-017-0979-4 pmid: 28921082 |
[31] | Perkins M, Smith RA, Samuels L. The transport of monomers during lignification in plants: anything goes but how?[J]. Curr Opin Biotechnol, 2019, 56: 69-74. |
[32] | Li LL, Zhang YC, Zheng TC, et al. Comparative gene expression analysis reveals that multiple mechanisms regulate the weeping trait in Prunus mume[J]. Sci Rep, 2021, 11(1): 2675. |
[33] | Lima LGA, Ferreira SS, Simões MS, et al. Comprehensive expression analyses of the ABCG subfamily reveal SvABCG17 as a potential transporter of lignin monomers in the model C4 grass Setaria viridis[J]. J Plant Physiol, 2023, 280: 153900. |
[34] |
Capote T, Barbosa P, Usié A, et al. ChIP-Seq reveals that QsMYB1 directly targets genes involved in lignin and suberin biosynthesis pathways in cork oak(Quercus suber)[J]. BMC Plant Biol, 2018, 18(1): 198.
doi: 10.1186/s12870-018-1403-5 pmid: 30223777 |
[35] |
Kaneda M, Schuetz M, Lin BSP, et al. ABC transporters coordinately expressed during lignification of Arabidopsis stems include a set of ABCBs associated with auxin transport[J]. J Exp Bot, 2011, 62(6): 2063-2077.
doi: 10.1093/jxb/erq416 pmid: 21239383 |
[36] | Rani B, Sharma VK. Transcriptome profiling: methods and applications- A review[J]. Agric Rev, 2017, 38(4): 271-281. |
[37] | Lanigan TM, Kopera HC, Saunders TL. Principles of genetic engineering[J]. Genes, 2020, 11(3): 291. |
[38] | 陈其军, 肖玉梅, 王学臣, 等. 植物功能基因组研究中的基因敲除技术[J]. 植物生理学通讯, 2004, 40(1): 121-126. |
Chen QJ, Xiao YM, Wang XC, et al. Gene knockout in plant functional genomics[J]. Plant Physiol Commun, 2004, 40(1): 121-126. | |
[39] |
Chen KL, Wang YP, Zhang R, et al. CRISPR/cas genome editing and precision plant breeding in agriculture[J]. Annu Rev Plant Biol, 2019, 70: 667-697.
doi: 10.1146/annurev-arplant-050718-100049 pmid: 30835493 |
[40] | Askri HMS. 利用CRISPR/Cas9编辑水稻木质素单体合成途径基因[D]. 武汉: 华中农业大学, 2018. |
Askri HMS. Characterization of lignin monomers biosynthesis genes in rice(Oryza sativa L.)by using CRISPR/CAS9 system[D]. Wuhan: Huazhong Agricultural University, 2018. | |
[41] |
Yang L, Zhao X, Ran LY, et al. PtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar[J]. Sci Rep, 2017, 7: 41209.
doi: 10.1038/srep41209 pmid: 28117379 |
[42] | Johar P, Salgotra RK. Elementary and advanced mechanisms for genetic engineering in crops[J]. Plant Cell Biotech Mol Biol, 2023, 24(7/8): 33-43. |
[43] |
张御格, 袁笑妍, 张贵芳, 等. 点击化学反应在植物细胞标记中的应用[J]. 植物学报, 2023, 58(6): 956-965.
doi: 10.11983/CBB22252 |
Zhang YG, Yuan XY, Zhang GF, et al. The application of click chemistry reactions in plant cell labeling[J]. Chin Bull Bot, 2023, 58(6): 956-965. | |
[44] | Bidhendi AJ, Chebli Y, Geitmann A. Fluorescence visualization of cellulose and pectin in the primary plant cell wall[J]. J Microsc, 2020, 278(3): 164-181. |
[45] | Pandey JL, Wang B, Diehl BG, et al. A versatile click-compatible monolignol probe to study lignin deposition in plant cell walls[J]. PLoS One, 2015, 10(4): e0121334. |
[46] |
Lion C, Simon C, Huss B, et al. BLISS: a bioorthogonal dual-labeling strategy to unravel lignification dynamics in plants[J]. Cell Chem Biol, 2017, 24(3): 326-338.
doi: S2451-9456(17)30039-9 pmid: 28262560 |
[47] | Simon C, Lion C, Huss B, et al. BLISS: shining a light on lignification in plants[J]. Plant Signal Behav, 2017, 12(8): e1359366. |
[48] | Simon C, Lion C, Spriet C, et al. One, two, three: a bioorthogonal triple labelling strategy for studying the dynamics of plant cell wall formation in vivo[J]. Angew Chem Int Ed Engl, 2018, 57(51): 16665-16671. |
[49] |
Tobimatsu Y. A “double click” for illuminating plant cell walls[J]. Cell Chem Biol, 2017, 24(3): 246-247.
doi: S2451-9456(17)30070-3 pmid: 28306499 |
[50] | Maceda A, Terrazas T. Fluorescence microscopy methods for the analysis and characterization of lignin[J]. Polymers, 2022, 14(5): 961. |
[51] | Baldacci-Cresp F, Spriet C, Twyffels L, et al. A rapid and quantitative safranin-based fluorescent microscopy method to evaluate cell wall lignification[J]. Plant J, 2020, 102(5): 1074-1089. |
[52] | Wightman R, Busse-Wicher M, Dupree P. Correlative FLIM-confocal-Raman mapping applied to plant lignin composition and autofluorescence[J]. Micron, 2019, 126: 102733. |
[53] |
Tobimatsu Y, Davidson CL, Grabber JH, et al. Fluorescence-tagged monolignols: synthesis, and application to studying in vitro lignification[J]. Biomacromolecules, 2011, 12(5): 1752-1761.
doi: 10.1021/bm200136x pmid: 21410250 |
[54] | Terryn C, Habrant A, Paës G, et al. Measuring interactions between fluorescent probes and lignin in plant sections by sFLIM based on native autofluorescence[J]. J Vis Exp, 2020(155):(155). |
[55] |
Chou EY, Schuetz M, Hoffmann N, et al. Distribution, mobility, and anchoring of lignin-related oxidative enzymes in Arabidopsis secondary cell walls[J]. J Exp Bot, 2018, 69(8): 1849-1859.
doi: 10.1093/jxb/ery067 pmid: 29481639 |
[56] | 岳同涛. 生物膜-膜蛋白相互作用及纳米粒子跨膜输运的粗粒化模拟研究[D]. 北京: 北京化工大学, 2012. |
Yue TT. Coarse-grained simulations of the biomembrane-protein interaction and the transmembrane transport of nanoparticles[D]. Beijing: Beijing University of Chemical Technology, 2012. | |
[57] | 张冰. 甲硫氨酸输入体MetNI转运抑制机理的分子模拟研究[D]. 上海: 复旦大学, 2014. |
Zhang B. Molecular dynamics simulations of trans-inhibition of methionine uptake transporter MetNI[D]. Shanghai: Fudan University, 2014. | |
[58] | Zhao XX, Meng XZ, Ragauskas AJ, et al. Unlocking the secret of lignin-enzyme interactions: recent advances in developing state-of-the-art analytical techniques[J]. Biotechnol Adv, 2022, 54: 107830. |
[59] | Vural D, Gainaru C, O'Neill H, et al. Impact of hydration and temperature history on the structure and dynamics of lignin[J]. Green Chem, 2018, 20(7): 1602-1611. |
[60] | Wang Y, Guo M, Zheng YL, et al. Atomic-scale investigation of the interaction between coniferyl alcohol and laccase for lignin degradation using molecular dynamics simulations and spectroscopy[J]. J Dispers Sci Technol, 2019, 40(5): 686-694. |
[61] |
Pereira CS, Silveira RL, Skaf MS. QM/MM simulations of enzymatic hydrolysis of cellulose: probing the viability of an endocyclic mechanism for an inverting cellulase[J]. J Chem Inf Model, 2021, 61(4): 1902-1912.
doi: 10.1021/acs.jcim.0c01380 pmid: 33760586 |
[62] | Tong XJ, Moradipour M, Novak B, et al. Experimental and molecular dynamics simulation study of the effects of lignin dimers on the gel-to-fluid phase transition in DPPC bilayers[J]. J Phys Chem B, 2019, 123(39): 8247-8260. |
[63] | Moradipour M, Tong XJ, Novak B, et al. Interaction of lignin dimers with model cell membranes: a quartz crystal microbalance and molecular dynamics simulation study[J]. Biointerphases, 2021, 16(4): 041003. |
[64] | Prašnikar E, Ljubič M, Perdih A, et al. Machine learning heralding a new development phase in molecular dynamics simulations[J]. Artif Intell Rev, 2024, 57(4): 102. |
[1] | 孙淑芳, 骆永丽, 李春辉, 金敏, 胥倩. UPLC-MS/MS测定小麦茎秆木质素单体交联结构的方法[J]. 生物技术通报, 2022, 38(10): 66-72. |
[2] | 张洋子, 朱龙佼, 邵向丽, 许文涛. 施陶丁格连接介导的生物传感及药物运输研究进展[J]. 生物技术通报, 2019, 35(1): 187-198. |
[3] | 冯瑜;马丽娟;闫楠;何芳莹;柴友荣;. 芸薹属原花青素跨膜转运蛋白TT12、AHA10基因家族RNA干扰载体的构建[J]. , 2010, 0(09): 116-122. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||