[1] |
邓蓉. 我国家禽产业现状分析及未来发展趋势[J]. 现代化农业, 2020(3): 68-71.
|
|
Deng R. Present situation analysis and future development trend of poultry industry in China[J]. Mod Agric, 2020(3): 68-71.
|
[2] |
刘旗. 我国畜禽遗传资源面临的问题及解决途径[J]. 农业技术与装备, 2012(15): 43-45.
|
|
Liu Q. Problems and solutions of livestock and poultry genetic resources in China[J]. Agric Technol Equip, 2012(15): 43-45.
|
[3] |
Zhang F. CRISPR-Cas9: prospects and challenges[J]. Hum Gene Ther, 2015, 26(7): 409-410.
doi: 10.1089/hum.2015.29002.fzh
pmid: 26176430
|
[4] |
Fu YF, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]. Nat Biotechnol, 2013, 31(9): 822-826.
doi: 10.1038/nbt.2623
pmid: 23792628
|
[5] |
Anderson KR, Haeussler M, Watanabe C, et al. CRISPR off-target analysis in genetically engineered rats and mice[J]. Nat Methods, 2018, 15(7): 512-514.
doi: 10.1038/s41592-018-0011-5
pmid: 29786090
|
[6] |
Zhang BY, Wang CY, Zhang Y, et al. A CRISPR-engineered swine model of COL2A1 deficiency recapitulates altered early skeletal developmental defects in humans[J]. Bone, 2020, 137: 115450.
|
[7] |
Tang HH, Wang DQ, Shu YL. Structural insights into Cas9 mismatch: promising for development of high-fidelity Cas9 variants[J]. Sig Transduct Target Ther, 2022, 7: 271.
|
[8] |
Vakulskas CA, Dever DP, Rettig GR, et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells[J]. Nat Med, 2018, 24(8): 1216-1224.
doi: 10.1038/s41591-018-0137-0
pmid: 30082871
|
[9] |
Ikeda A, Fujii W, Sugiura K, et al. High-fidelity endonuclease variant HypaCas9 facilitates accurate allele-specific gene modification in mouse zygotes[J]. Commun Biol, 2019, 2: 371.
doi: 10.1038/s42003-019-0627-8
pmid: 31633062
|
[10] |
Walton RT, Christie KA, Whittaker MN, et al. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants[J]. Science, 2020, 368(6488): 290-296.
doi: 10.1126/science.aba8853
pmid: 32217751
|
[11] |
Bravo JPK, Liu MS, Hibshman GN, et al. Structural basis for mismatch surveillance by CRISPR-Cas9[J]. Nature, 2022, 603(7900): 343-347.
|
[12] |
Zong Y, Wang YP, Li C, et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion[J]. Nat Biotechnol, 2017, 35(5): 438-440.
doi: 10.1038/nbt.3811
pmid: 28244994
|
[13] |
Tang X, Ren QR, Yang LJ, et al. Single transcript unit CRISPR 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing[J]. Plant Biotechnol J, 2019, 17(7): 1431-1445.
doi: 10.1111/pbi.13068
pmid: 30582653
|
[14] |
Kim N, Choi S, Kim S, et al. Deep learning models to predict the editing efficiencies and outcomes of diverse base editors[J]. Nat Biotechnol, 2024, 42(3): 484-497.
|
[15] |
Idoko-Akoh A, Goldhill DH, Sheppard CM, et al. Creating resistance to avian influenza infection through genome editing of the ANP32 gene family[J]. Nat Commun, 2023, 14(1): 6136.
doi: 10.1038/s41467-023-41476-3
pmid: 37816720
|
[16] |
Rengaraj D, Zheng YH, Kang KS, et al. Conserved expression pattern of chicken DAZL in primordial germ cells and germ-line cells[J]. Theriogenology, 2010, 74(5): 765-776.
doi: 10.1016/j.theriogenology.2010.04.001
pmid: 20537692
|
[17] |
Kulcsár PI, Tálas A, Huszár K, et al. Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage[J]. Genome Biol, 2017, 18(1): 190.
doi: 10.1186/s13059-017-1318-8
pmid: 28985763
|
[18] |
Hu JH, Miller SM, Geurts MH, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556(7699): 57-63.
|
[19] |
Anders C, Niewoehner O, Duerst A, Jinek M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease[J]. Nature, 2014, 513(7519): 569-573.
|
[20] |
Zhang DB, Zhang HW, Li TD, et al. Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases[J]. Genome Biol, 2017, 18(1): 191.
doi: 10.1186/s13059-017-1325-9
pmid: 29020979
|
[21] |
戴小芳. 鸡病流行特点及防治措施分析[J]. 新农民, 2024(11):126-128.
|
|
Dai XF. Analysis of epidemic characteristics and preventive measures of chicken diseases[J]. New Farmer, 2024(11):126-128.
|
[22] |
张迎冰, 张成图, 吴英, 等. 单碱基编辑技术的原理、发展及其在家畜育种中的应用[J]. 生物工程学报, 2023, 39(1):19-33.
|
|
Zhang YB, Zhang CT, Wu Y, et al. Principles and development of single base editing technology and its application in livestock breeding[J]. Journal of Biological Engineering, 2023, 39(1):19-33.
|
[23] |
Chen JS, Dagdas YS, Kleinstiver BP, et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy[J]. Nature, 2017, 550(7676): 407-410.
|
[24] |
Kim N, Kim HK, Lee S, et al. Prediction of the sequence-specific cleavage activity of Cas9 variants[J]. Nat Biotechnol, 2020, 38(11): 1328-1336.
|
[25] |
Kulcsár PI, Tálas A, Ligeti Z, et al. SuperFi-Cas9 exhibits remarkable fidelity but severely reduced activity yet works effectively with ABE8e[J]. Nat Commun, 2022, 13(1): 6858.
doi: 10.1038/s41467-022-34527-8
pmid: 36369279
|