[1] |
Gabay O, Shoshan Y, Kopel E, et al. Landscape of adenosine-to-inosine RNA recoding across human tissues[J]. Nat Commun, 2022, 13(1): 1184.
doi: 10.1038/s41467-022-28841-4
pmid: 35246538
|
[2] |
Noda Y, Okada S, Suzuki T. Regulation of A-to-I RNA editing and stop codon recoding to control selenoprotein expression during skeletal myogenesis[J]. Nat Commun, 2022, 13(1): 2503.
doi: 10.1038/s41467-022-30181-2
pmid: 35523818
|
[3] |
Teoh PJ, Koh MY, Chng WJ. ADARs, RNA editing and more in hematological malignancies[J]. Leukemia, 2021, 35(2): 346-359.
doi: 10.1038/s41375-020-01076-2
pmid: 33139858
|
[4] |
Jimeno S, Prados-Carvajal R, Fernández-Ávila MJ, et al. ADAR-mediated RNA editing of DNA: RNA hybrids is required for DNA double strand break repair[J]. Nat Commun, 2021, 12(1): 5512.
doi: 10.1038/s41467-021-25790-2
pmid: 34535666
|
[5] |
Shiromoto Y, Sakurai M, Minakuchi M, et al. ADAR1 RNA editing enzyme regulates R-loop formation and genome stability at telomeres in cancer cells[J]. Nat Commun, 2021, 12(1): 1654.
doi: 10.1038/s41467-021-21921-x
pmid: 33712600
|
[6] |
Heraud-Farlow JE, Walkley CR. What do editors do? Understanding the physiological functions of A-to-I RNA editing by adenosine deaminase acting on RNAs[J]. Open Biol, 2020, 10(7): 200085.
|
[7] |
Ma YY, Dammer EB, Felsky D, et al. Atlas of RNA editing events affecting protein expression in aged and Alzheimer's disease human brain tissue[J]. Nat Commun, 2021, 12(1): 7035.
doi: 10.1038/s41467-021-27204-9
pmid: 34857756
|
[8] |
Lebrigand K, Bergenstråhle J, Thrane K, et al. The spatial landscape of gene expression isoforms in tissue sections[J]. Nucleic Acids Res, 2023, 51(8): e47.
|
[9] |
Wu D, Zang YY, Shi YY, et al. Distant coupling between RNA editing and alternative splicing of the osmosensitive cation channel Tmem63b[J]. J Biol Chem, 2020, 295(52): 18199-18212.
|
[10] |
Voss G, Cassidy JR, Ceder Y. Functional consequences of A-to-I editing of miR-379 in prostate cancer cells[J]. Sci Rep, 2023, 13(1): 16602.
|
[11] |
Shen HQ, An O, Ren X, et al. ADARs act as potent regulators of circular transcriptome in cancer[J]. Nat Commun, 2022, 13(1): 1508.
doi: 10.1038/s41467-022-29138-2
pmid: 35314703
|
[12] |
Xu BY, Qin WX, Chen YW, et al. Multi-omics analysis reveals gut microbiota-ovary axis contributed to the follicular development difference between Meishan and Landrace × Yorkshire sows[J]. J Anim Sci Biotechnol, 2023, 14(1): 68.
|
[13] |
Zhou YY, Li JQ, Huang F, et al. Characterization of the pig lower respiratory tract antibiotic resistome[J]. Nat Commun, 2023, 14(1): 4868.
doi: 10.1038/s41467-023-40587-1
pmid: 37573429
|
[14] |
Ling ZQ, Li J, Jiang T, et al. Omics-based construction of regulatory variants can be applied to help decipher pig liver-related traits[J]. Commun Biol, 2024, 7(1): 381.
doi: 10.1038/s42003-024-06050-7
pmid: 38553586
|
[15] |
Adetula AA, Fan XH, Zhang YS, et al. Landscape of tissue-specific RNA Editome provides insight into co-regulated and altered gene expression in pigs(Sus-scrofa)[J]. RNA Biol, 2021, 18(sup1): 439-450.
|
[16] |
Paukszto L, Mikolajczyk A, Jastrzebski JP, et al. Transcriptome, spliceosome and editome expression patterns of the porcine endometrium in response to a single subclinical dose of Salmonella enteritidis lipopolysaccharide[J]. Int J Mol Sci, 2020, 21(12): 4217.
|
[17] |
Yang L, Huang L, Mu YL, et al. Characterization of A-to-I editing in pigs under a long-term high-energy diet[J]. Int J Mol Sci, 2023, 24(9): 7921.
|
[18] |
Li TT, Li Q, Li H, et al. Pig-specific RNA editing during early embryo development revealed by genome-wide comparisons[J]. FEBS Open Bio, 2020, 10(7): 1389-1402.
doi: 10.1002/2211-5463.12900
pmid: 32433824
|
[19] |
Yang YL, Zhu M, Fan XH, et al. Developmental atlas of the RNA editome in Sus scrofa skeletal muscle[J]. DNA Res, 2019, 26(3): 261-272.
|
[20] |
Wang ZS, Feng XK, Tang ZL, et al. Genome-wide investigation and functional analysis of Sus scrofa RNA editing sites across eleven tissues[J]. Genes, 2019, 10(5): 327.
|
[21] |
Tan MH, Consortium G, Li Q, et al. Dynamic landscape and regulation of RNA editing in mammals[J]. Nature, 2017, 550(7675): 249-254.
|
[22] |
Zhang YB, Zhang LC, Yue JW, et al. Genome-wide identification of RNA editing in seven porcine tissues by matched DNA and RNA high-throughput sequencing[J]. J Anim Sci Biotechnol, 2019, 10: 24.
|
[23] |
Sherman BT, Hao M, Qiu J, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists(2021 update)[J]. Nucleic Acids Res, 2022, 50(W1): W216-W221.
doi: 10.1093/nar/gkac194
pmid: 35325185
|
[24] |
Larsen K, Heide-Jørgensen MP. Conservation of A-to-I RNA editing in bowhead whale and pig[J]. PLoS One, 2021, 16(12): e0260081.
|
[25] |
Zhou R, Yao WY, Xie CD, et al. Developmental stage-specific A-to-I editing pattern in the postnatal pineal gland of pigs(Sus scrofa)[J]. J Anim Sci Biotechnol, 2020, 11: 90.
|
[26] |
Nguyen TA, Heng JWJ, Kaewsapsak P, et al. Direct identification of A-to-I editing sites with nanopore native RNA sequencing[J]. Nat Methods, 2022, 19(7): 833-844.
doi: 10.1038/s41592-022-01513-3
pmid: 35697834
|
[27] |
Wu XY, Ayalew W, Chu M, et al. Characterization of RNA editome in the mammary gland of yaks during the lactation and dry periods[J]. Animals, 2022, 12(2): 207.
|
[28] |
Booth BJ, Nourreddine S, Katrekar D, et al. RNA editing: expanding the potential of RNA therapeutics[J]. Mol Ther, 2023, 31(6): 1533-1549.
doi: 10.1016/j.ymthe.2023.01.005
pmid: 36620962
|
[29] |
Zhang F, Lu YL, Yan SJ, et al. SPRINT: an SNP-free toolkit for identifying RNA editing sites[J]. Bioinformatics, 2017, 33(22): 3538-3548.
doi: 10.1093/bioinformatics/btx473
pmid: 29036410
|
[30] |
Zambrano-Mila MS, Witzenberger M, Rosenwasser Z, et al. Dissecting the basis for differential substrate specificity of ADAR1 and ADAR2[J]. Nat Commun, 2023, 14(1): 8212.
doi: 10.1038/s41467-023-43633-0
pmid: 38081817
|
[31] |
Huang JR, Lin L, Dong ZY, et al. A porcine brain-wide RNA editing landscape[J]. Commun Biol, 2021, 4(1): 717.
doi: 10.1038/s42003-021-02238-3
pmid: 34112917
|
[32] |
Yao L, Wang HM, Song YY, et al. Large-scale prediction of ADAR-mediated effective human A-to-I RNA editing[J]. Brief Bioinform, 2019, 20(1): 102-109.
doi: 10.1093/bib/bbx092
pmid: 28968662
|
[33] |
Al-Roub A, Akhter N, Al-Rashed F, et al. TNFα induces matrix metalloproteinase-9 expression in monocytic cells through ACSL1/JNK/ERK/NF-kB signaling pathways[J]. Sci Rep, 2023, 13(1): 14351.
doi: 10.1038/s41598-023-41514-6
pmid: 37658104
|
[34] |
Zhang XY, Gao Y, Liu ZZ, et al. Salicylate sodium suppresses monocyte chemoattractant protein-1 production by directly inhibiting phosphodiesterase 3B in TNF-α-stimulated adipocytes[J]. Int J Mol Sci, 2022, 24(1): 320.
|
[35] |
Hosooka T, Hosokawa Y, Matsugi K, et al. The PDK1-FoxO1 signaling in adipocytes controls systemic insulin sensitivity through the 5-lipoxygenase-leukotriene B4 axis[J]. Proc Natl Acad Sci USA, 2020, 117(21): 11674-11684.
|
[36] |
Liebscher G, Vujic N, Schreiber R, et al. The lysosomal LAMTOR/Ragulator complex is essential for nutrient homeostasis in brown adipose tissue[J]. Mol Metab, 2023, 71: 101705.
|