生物技术通报 ›› 2024, Vol. 40 ›› Issue (3): 109-117.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0681
收稿日期:
2023-07-17
出版日期:
2024-03-26
发布日期:
2024-04-08
通讯作者:
刘强,男,硕士,教授,研究方向:畜禽资源的开发与利用;E-mail: liuqiang@aku.edu.cn;作者简介:
赵鸿远,男,博士,讲师,研究方向:动物分子病毒学与免疫学;E-mail: zhaohongyuan18@163.com
基金资助:
ZHAO Hong-yuan1(), LIU Qiang2(), CHENG Wen-yu1()
Received:
2023-07-17
Published:
2024-03-26
Online:
2024-04-08
摘要:
非洲猪瘟病毒(African swine fever virus,ASFV)拥有多种逃逸宿主免疫应答的策略,造成病毒难以被宿主清除。cGAS-STING信号通路介导的天然免疫在抗ASFV感染中发挥了重要作用,然而病毒编码的多个蛋白靶向该通路中的不同分子以拮抗宿主的I型干扰素应答。利用基因编辑技术敲除这些病毒基因后,ASFV对宿主的致病性降低,成为基因缺失疫苗的研制潜在靶点。本文对目前已知参与调控宿主cGAS-STING信号通路的病毒蛋白进行总结,旨在阐明这些蛋白免疫逃逸cGAS-STING信号通路的分子机制,加深对ASFV免疫逃逸策略的理解,以期为ASFV致病机制研究与疫苗创制提供参考。
赵鸿远, 刘强, 成温玉. 非洲猪瘟病毒拮抗宿主cGAS-STING信号通路的研究进展[J]. 生物技术通报, 2024, 40(3): 109-117.
ZHAO Hong-yuan, LIU Qiang, CHENG Wen-yu. Research Progress in cGAS-STING Signaling Pathway in ASFV Antagonizing Host[J]. Biotechnology Bulletin, 2024, 40(3): 109-117.
图1 cGAS-STING信号通路示意图 AP-1:激活蛋白1;cGAS:环鸟苷酸-腺苷酸合成酶;cGAMP:环鸟苷酸腺苷酸;ER:内质网;IKK:核因子κB抑制剂激酶;IL:白介素;IRF:干扰素调节因子;ISG:干扰素刺激基因;STING:干扰素刺激基因;p-STING:磷酸化的干扰素刺激基因;TBK1:TANK结合激酶
Fig. 1 Schematic diagram of cGAS-STING signal pathway AP-1: Activating protein 1. cGAS: Cyclic GMP-AMP synthase. cGAMP: Cyclic guanosine monophosphate-adenosine monophosphate. ER: Endoplasmic reticulum. IKK: Inhibitor of nuclear factor-κB kinase. IL: Interleukin. IRF: IFN-regulatory factor. ISG: Interferon stimulated gene. STING: Stimulator of interferon gene. p-STING: Phosphorylated STING. TBK1: TANK-binding kinase 1
[1] |
赵鸿远, 王朝, 成温玉, 等. 抗非洲猪瘟病毒制剂的研究进展[J]. 生物技术通报, 2021, 37(5): 174-181.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-1079 |
Zhao HY, Wang Z, Cheng WY, et al. Progress on antiviral agents against African swine fever virus[J]. Biotechnol Bull, 2021, 37(5): 174-181. | |
[2] | Alejo A, Matamoros T, Guerra M, et al. A proteomic atlas of the African swine fever virus particle[J]. J Virol, 2018, 92(23): e01293-18. |
[3] |
Cheng WY, He XB, Jia HJ, et al. The cGas-sting signaling pathway is required for the innate immune response against ectromelia virus[J]. Front Immunol, 2018, 9: 1297.
doi: 10.3389/fimmu.2018.01297 URL |
[4] | 成温玉, 雷霆宇, 张博昕, 等. DNA识别受体介导的天然免疫参与抗痘病毒感染的研究进展[J]. 中国人兽共患病学报, 2022, 38(4): 341-348. |
Cheng WY, Lei TY, Zhang BX, et al. Research progress in DNA sensor-mediated innate immunity against poxvirus infection[J]. Chin J Zoonoses, 2022, 38(4): 341-348. | |
[5] | 成温玉, 何小兵, 贾怀杰, 等. 小鼠DDX5分子结构特征及功能初步探究[J]. 基因组学与应用生物学, 2021, 40(S1): 1983-1992. |
Cheng WY, He XB, Jia HJ, et al. Analysis of molecular structural characteristics and elementary functions of mouse DDX5[J]. Genom Appl Biol, 2021, 40(S1): 1983-1992. | |
[6] |
He WR, Yuan J, Ma YH, et al. Modulation of host antiviral innate immunity by African swine fever virus: a review[J]. Animals, 2022, 12(21): 2935.
doi: 10.3390/ani12212935 URL |
[7] | Cheng ZL, Dai T, He XL, et al. The interactions between cGAS-STING pathway and pathogens[J]. Signal Transduct Target Ther, 2020, 5(1): 91. |
[8] |
Andreeva L, Hiller B, Kostrewa D, et al. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders[J]. Nature, 2017, 549(7672): 394-398.
doi: 10.1038/nature23890 URL |
[9] |
Luecke S, Holleufer A, Christensen MH, et al. cGAS is activated by DNA in a length-dependent manner[J]. EMBO Rep, 2017, 18(10): 1707-1715.
doi: 10.15252/embr.201744017 pmid: 28801534 |
[10] |
Shang GJ, Zhang CG, Chen ZJ, et al. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP[J]. Nature, 2019, 567(7748): 389-393.
doi: 10.1038/s41586-019-0998-5 |
[11] |
Hussain B, Xie YF, Jabeen U, et al. Activation of STING based on its structural features[J]. Front Immunol, 2022, 13: 808607.
doi: 10.3389/fimmu.2022.808607 URL |
[12] |
Balka KR, Louis C, Saunders TL, et al. TBK1 and IKKε act redundantly to mediate STING-induced NF-κB responses in myeloid cells[J]. Cell Rep, 2020, 31(1): 107492.
doi: 10.1016/j.celrep.2020.03.056 URL |
[13] | García-Belmonte R, Pérez-Núñez D, Pittau M, et al. African swine fever virus Armenia/07 virulent strain controls interferon beta production through the cGAS-STING pathway[J]. J Virol, 2019, 93(12): e02298-18. |
[14] |
Karalyan Z, Zakaryan H, Sargsyan K, et al. Interferon status and white blood cells during infection with African swine fever virus in vivo[J]. Vet Immunol Immunopathol, 2012, 145(1-2): 551-555.
doi: 10.1016/j.vetimm.2011.12.013 URL |
[15] |
Franzoni G, Pedrera M, Sánchez-Cordón PJ. African swine fever virus infection and cytokine response in vivo: an update[J]. Viruses, 2023, 15(1): 233.
doi: 10.3390/v15010233 URL |
[16] |
Eaglesham JB, Pan YD, Kupper TS, et al. Viral and metazoan poxins are cGAMP-specific nucleases that restrict cGAS-STING signalling[J]. Nature, 2019, 566(7743): 259-263.
doi: 10.1038/s41586-019-0928-6 |
[17] |
Dodantenna N, Ranathunga L, Chathuranga WAG, et al. African swine fever virus EP364R and C129R target cyclic GMP-AMP to inhibit the cGAS-STING signaling pathway[J]. J Virol, 2022, 96(15): e0102222.
doi: 10.1128/jvi.01022-22 URL |
[18] |
Zheng WL, Xia NW, Zhang JJ, et al. African swine fever virus structural protein p17 inhibits cGAS-STING signaling pathway through interacting with STING[J]. Front Immunol, 2022, 13: 941579.
doi: 10.3389/fimmu.2022.941579 URL |
[19] |
Zhu ZX, Li SS, Ma CN, et al. African swine fever virus E184L protein interacts with innate immune adaptor STING to block IFN production for viral replication and pathogenesis[J]. J Immunol, 2023, 210(4): 442-458.
doi: 10.4049/jimmunol.2200357 pmid: 36602826 |
[20] |
Ramirez-Medina E, Vuono E, Rai A, et al. Deletion of E184L, a putative DIVA target from the pandemic strain of African swine fever virus, produces a reduction in virulence and protection against virulent challenge[J]. J Virol, 2022, 96(1): e0141921.
doi: 10.1128/JVI.01419-21 URL |
[21] | 王曼, 沈宇清. 非洲猪瘟病毒结构蛋白CD2v的功能研究进展[J]. 中国免疫学杂志, 2021, 37(22): 2734-2737, 2744. |
Wang M, Shen YQ. Research progress in function of ASFV structural protein CD2v[J]. Chin J Immunol, 2021, 37(22): 2734-2737, 2744. | |
[22] |
Huang L, Chen WY, Liu HY, et al. African swine fever virus HLJ/18 CD2v suppresses type I IFN production and IFN-stimulated genes expression through negatively regulating cGMP-AMP synthase-STING and IFN signaling pathways[J]. J Immunol, 2023, 210(9): 1338-1350.
doi: 10.4049/jimmunol.2200813 pmid: 36971697 |
[23] |
Li D, Yang WP, Li LL, et al. African swine fever virus MGF-505-7R negatively regulates cGAS-STING-mediated signaling pathway[J]. J Immunol, 2021, 206(8): 1844-1857.
doi: 10.4049/jimmunol.2001110 pmid: 33712518 |
[24] |
Yang KD, Huang QT, Wang RY, et al. African swine fever virus MGF505-11R inhibits type I interferon production by negatively regulating the cGAS-STING-mediated signaling pathway[J]. Vet Microbiol, 2021, 263: 109265.
doi: 10.1016/j.vetmic.2021.109265 URL |
[25] |
Chapman DAG, Tcherepanov V, Upton C, et al. Comparison of the genome sequences of non-pathogenic and pathogenic African swine fever virus isolates[J]. J Gen Virol, 2008, 89(Pt 2): 397-408.
doi: 10.1099/vir.0.83343-0 pmid: 18198370 |
[26] |
Cheng MY, Kanyema MM, Sun Y, et al. African swine fever virus L83L negatively regulates the cGAS-STING-mediated IFN-I pathway by recruiting tollip to promote STING autophagic degradation[J]. J Virol, 2023, 97(2): e0192322.
doi: 10.1128/jvi.01923-22 URL |
[27] | Li JN, Song J, Kang L, et al. pMGF505-7 R determines pathogenicity of African swine fever virus infection by inhibiting IL-1β and type I IFN production[J]. PLoS Pathog, 2021, 17(7): e1009733. |
[28] | O'Donnell V, Risatti GR, Holinka LG, et al. Simultaneous deletion of the 9GL and UK genes from the African swine fever virus Georgia 2007 isolate offers increased safety and protection against homologous challenge[J]. J Virol, 2016, 91(1): e01760-16. |
[29] |
Wang XX, Wu J, Wu YT, et al. Inhibition of cGAS-STING-TBK1 signaling pathway by DP96R of ASFV China 2018/1[J]. Biochem Biophys Res Commun, 2018, 506(3): 437-443.
doi: 10.1016/j.bbrc.2018.10.103 URL |
[30] |
Huang L, Xu WJ, Liu HY, et al. African swine fever virus pI215L negatively regulates cGAS-STING signaling pathway through recruiting RNF138 to inhibit K63-linked ubiquitination of TBK1[J]. J Immunol, 2021, 207(11): 2754-2769.
doi: 10.4049/jimmunol.2100320 pmid: 34759016 |
[31] |
Freitas FB, Frouco G, Martins C, et al. African swine fever virus encodes for an E2-ubiquitin conjugating enzyme that is mono- and di-ubiquitinated and required for viral replication cycle[J]. Sci Rep, 2018, 8(1): 3471.
doi: 10.1038/s41598-018-21872-2 pmid: 29472632 |
[32] |
Sun MW, Yu SX, Ge HL, et al. The A137R protein of African swine fever virus inhibits type I interferon production via the autophagy-mediated lysosomal degradation of TBK1[J]. J Virol, 2022, 96(9): e0195721.
doi: 10.1128/jvi.01957-21 URL |
[33] |
Reis AL, Abrams CC, Goatley LC, et al. Deletion of African swine fever virus interferon inhibitors from the genome of a virulent isolate reduces virulence in domestic pigs and induces a protective response[J]. Vaccine, 2016, 34(39): 4698-4705.
doi: S0264-410X(16)30668-5 pmid: 27521231 |
[34] | Zhang KS, Yang B, Shen CC, et al. MGF360-9 L is a major virulence factor associated with the African swine fever virus by antagonizing the JAK/STAT signaling pathway[J]. mBio, 2022, 13(1): e0233021. |
[35] |
Yang KD, Xue Y, Niu H, et al. African swine fever virus MGF360-11L negatively regulates cGAS-STING-mediated inhibition of type I interferon production[J]. Vet Res, 2022, 53(1): 7.
doi: 10.1186/s13567-022-01025-0 pmid: 35073979 |
[36] |
Zhuo YS, Guo ZH, Ba TT, et al. African swine fever virus MGF360-12L inhibits type I interferon production by blocking the interaction of importin α and NF-κB signaling pathway[J]. Virol Sin, 2021, 36(2): 176-186.
doi: 10.1007/s12250-020-00304-4 pmid: 33141406 |
[37] |
Wang Y, Cui S, Xin T, et al. African swine fever virus MGF360-14L negatively regulates type I interferon signaling by targeting IRF3[J]. Front Cell Infect Microbiol, 2022, 11: 818969.
doi: 10.3389/fcimb.2021.818969 URL |
[38] |
Luo J, Zhang JJ, Ni JH, et al. The African swine fever virus protease pS273R inhibits DNA sensing cGAS-STING pathway by targeting IKKε[J]. Virulence, 2022, 13(1): 740-756.
doi: 10.1080/21505594.2022.2065962 URL |
[39] | Li GB, Liu XX, Yang MY, et al. Crystal structure of African swine fever virus pS273R protease and implications for inhibitor design[J]. J Virol, 2020, 94(10): e02125-19. |
[40] |
Zhao GH, Li TT, Liu XM, et al. African swine fever virus cysteine protease pS273R inhibits pyroptosis by noncanonically cleaving gasdermin D[J]. J Biol Chem, 2022, 298(1): 101480.
doi: 10.1016/j.jbc.2021.101480 URL |
[41] |
Liu HS, Zhu ZX, Feng T, et al. African swine fever virus E120R protein inhibits interferon beta production by interacting with IRF3 to block its activation[J]. J Virol, 2021, 95(18): e0082421.
doi: 10.1128/JVI.00824-21 URL |
[42] |
Zhang YY, Ke JN, Zhang JY, et al. African swine fever virus bearing an I226R gene deletion elicits robust immunity in pigs to African swine fever[J]. J Virol, 2021, 95(23): e0119921.
doi: 10.1128/JVI.01199-21 URL |
[43] |
Hong JX, Chi XJ, Yuan X, et al. I226R protein of African swine fever virus is a suppressor of innate antiviral responses[J]. Viruses, 2022, 14(3): 575.
doi: 10.3390/v14030575 URL |
[44] |
Cui S, Wang Y, Gao XT, et al. African swine fever virus M1249L protein antagonizes type I interferon production via suppressing phosphorylation of TBK1 and degrading IRF3[J]. Virus Res, 2022, 319: 198872.
doi: 10.1016/j.virusres.2022.198872 URL |
[45] |
Liu XH, Liu HY, Ye GQ, et al. African swine fever virus pE301R negatively regulates cGAS-STING signaling pathway by inhibiting the nuclear translocation of IRF3[J]. Vet Microbiol, 2022, 274: 109556.
doi: 10.1016/j.vetmic.2022.109556 URL |
[46] |
Chen H, Wang ZZ, Gao XY, et al. ASFV pD345L protein negatively regulates NF-κB signalling by inhibiting IKK kinase activity[J]. Vet Res, 2022, 53(1): 32.
doi: 10.1186/s13567-022-01050-z pmid: 35461299 |
[47] |
Barrado-Gil L, Del Puerto A, Galindo I, et al. African swine fever virus ubiquitin-conjugating enzyme is an immunomodulator targeting NF-κB activation[J]. Viruses, 2021, 13(6): 1160.
doi: 10.3390/v13061160 URL |
[1] | 赵鸿远, 王朝, 成温玉, 马宁宁, 李曼, 魏小丽. 抗非洲猪瘟病毒制剂的研究进展[J]. 生物技术通报, 2021, 37(5): 174-181. |
[2] | 邹晨辰, 阮灵伟, 施泓. Wnt信号通路与无脊椎动物天然免疫[J]. 生物技术通报, 2021, 37(5): 182-196. |
[3] | 王彩霞, 杜方原, 林祥梅, GrzegorzWozniakowski, 王勤, 冯春燕, 吴绍强. 稳定表达非洲猪瘟病毒P54蛋白的Vero细胞系的建立[J]. 生物技术通报, 2020, 36(5): 139-144. |
[4] | 成温玉, 白云, 贾怀杰, 强桃艳, 赵鸿远, 张博艺, 郭晓荟. 猪流行性腹泻病毒蛋白拮抗宿主天然免疫应答的研究进展[J]. 生物技术通报, 2020, 36(12): 229-238. |
[5] | 欧云文, 刘俐君, 代军飞, 马炳, 张永光, 张杰. 非洲猪瘟病毒结构蛋白在病毒感染过程中的作用[J]. 生物技术通报, 2019, 35(6): 156-163. |
[6] | 房恩贞;夏雪山;. 丙型肝炎病毒基因突变与免疫逃逸[J]. , 2008, 0(05): 45-47. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||