生物技术通报 ›› 2024, Vol. 40 ›› Issue (10): 86-97.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0691
收稿日期:
2024-07-21
出版日期:
2024-10-26
发布日期:
2024-11-20
通讯作者:
李冲作者简介:
李冲,男,博士,研究员,研究方向:应用微生物学;E-mail: lichonglx@163.com
基金资助:
LI Chong1(), YANG Ya-nan1, WANG Cui-xia1, ZHENG Hai-xin1,2
Received:
2024-07-21
Published:
2024-10-26
Online:
2024-11-20
摘要:
农业环境污染对我国粮食生产构成了重大挑战,对其开展有效治理已刻不容缓。基于微生物的农业环境污染修复技术效率高、成本低,且不造成二次污染,是当前研究的热点。微生物耦合生物炭可进一步提高其消减环境污染物的效率,且取得了一定的效果。在此背景下,本文首先综述了功能微生物在修复环境污染物中的作用及生物炭负载微生物在当前环境修复中的应用现状,然后讨论了生物炭负载微生物技术在修复效率与资源利用方面的优势与面临的挑战。在此基础上,本文结合当前技术的发展提出微生物与生物炭协同修复技术可深入研究的方向,为了解相关修复技术的有效性及安全性提供依据。
李冲, 杨亚楠, 王翠霞, 郑海鑫. 微生物-生物炭协同修复农业环境中的多元污染物[J]. 生物技术通报, 2024, 40(10): 86-97.
LI Chong, YANG Ya-nan, WANG Cui-xia, ZHENG Hai-xin. Synergistic Remediation of Multiple Pollutants in Agricultural Environment by Microorganisms and Biochar[J]. Biotechnology Bulletin, 2024, 40(10): 86-97.
图1 微生物在农业环境污染修复中的作用 实线箭头均表示生物化学反应过程,虚线箭头表示传递过程
Fig. 1 The role of microorganisms in the remediation of agricultural environmental pollution Solid arrows indicate the biochemical reaction process, while dotted arrows indicate the transfer process
污染物 Pollutant | 功能微生物 Microorganism | 生物炭类型 Biochar type | 负载方式 Loaded method | 去除率 Removal ratio/% | 参考文献 Reference |
---|---|---|---|---|---|
镉 Cd | 芽孢杆菌Bacillus sp. K1 | 磁性稻草秸秆Magnetic rice straw | 包埋法Embedding | 88.1 | [ |
镉 Cd | 丛毛单胞菌Testosteroni ZG2 | 鸡的粪便衍生物 Chicken manure-derived | 吸附法Adsorption | 81.4 | [ |
镉 Cd | 芽孢杆菌Megaterium | 玉米秸秆Maize straw | 吸附法Adsorption | 25.53 | [ |
镉 Cd | MA菌群(Bacillus subtilis, B. cereus, and Citrobacter sp.) | 玉米秸秆Maize straw | 吸附法Adsorption | 54.2 | [ |
汞 Hg | Lecythophora sp. DC-F1 | 松木Pine sawdust | 混合法Hybridization | 13.3-26.1 | [ |
砷 As | Bacillus aryabhattai | 贝壳Shell | 吸附法Adsorption | 63.51 | [ |
菲 PHE | Mycobacterium gilvum | 水稻秸秆、污泥、猪粪 Rice straw, sewage sludge, and pig manure | 吸附法Adsorption | 62.6 | [ |
16 US-EPA PAHs | J-3菌群(主要含Shinella, Azospirillum,and Rhodospirillales_norank) | 玉米秸秆Corn straw | 吸附法Adsorption | 88.25 | [ |
菲 PHE | Pseudomonas putida | 竹子Bamboo | 吸附法Adsorption | 96.82 | [ |
菲 PHE | Suaeda salsa L. | 棉秆Cotton stalk | 吸附法Adsorption | 91.67 | [ |
多环芳烃 PAHs | Bacillus sp. KSB7 | 花生壳Peanut shell | 吸附法Adsorption | 36.7 | [ |
芘Pyrene | Bacillus sp. W1 Bacillus sp. W2 | 菠萝皮Pineapple peels | 吸附法Adsorption | 82.32 | [ |
2,2',4,4'四溴化二苯醚 BDE-47 | 假单胞菌Plecoglossicida | 水葫芦Eichhornia crassipes | 吸附法Adsorption | 42.8 | [ |
六氯环己烷 α-HCH | 鞘氨醇单胞菌Sphingomonas(TSK-1) 诺卡菌Nocardioides(PD653) | 椰子壳Coconut shell | 吸附法Adsorption | 67.1 | [ |
表1 生物炭负载微生物在土壤中重金属修复中的应用
Table 1 Application of biochar-loaded microbe in the remediation of heavy metal in soil
污染物 Pollutant | 功能微生物 Microorganism | 生物炭类型 Biochar type | 负载方式 Loaded method | 去除率 Removal ratio/% | 参考文献 Reference |
---|---|---|---|---|---|
镉 Cd | 芽孢杆菌Bacillus sp. K1 | 磁性稻草秸秆Magnetic rice straw | 包埋法Embedding | 88.1 | [ |
镉 Cd | 丛毛单胞菌Testosteroni ZG2 | 鸡的粪便衍生物 Chicken manure-derived | 吸附法Adsorption | 81.4 | [ |
镉 Cd | 芽孢杆菌Megaterium | 玉米秸秆Maize straw | 吸附法Adsorption | 25.53 | [ |
镉 Cd | MA菌群(Bacillus subtilis, B. cereus, and Citrobacter sp.) | 玉米秸秆Maize straw | 吸附法Adsorption | 54.2 | [ |
汞 Hg | Lecythophora sp. DC-F1 | 松木Pine sawdust | 混合法Hybridization | 13.3-26.1 | [ |
砷 As | Bacillus aryabhattai | 贝壳Shell | 吸附法Adsorption | 63.51 | [ |
菲 PHE | Mycobacterium gilvum | 水稻秸秆、污泥、猪粪 Rice straw, sewage sludge, and pig manure | 吸附法Adsorption | 62.6 | [ |
16 US-EPA PAHs | J-3菌群(主要含Shinella, Azospirillum,and Rhodospirillales_norank) | 玉米秸秆Corn straw | 吸附法Adsorption | 88.25 | [ |
菲 PHE | Pseudomonas putida | 竹子Bamboo | 吸附法Adsorption | 96.82 | [ |
菲 PHE | Suaeda salsa L. | 棉秆Cotton stalk | 吸附法Adsorption | 91.67 | [ |
多环芳烃 PAHs | Bacillus sp. KSB7 | 花生壳Peanut shell | 吸附法Adsorption | 36.7 | [ |
芘Pyrene | Bacillus sp. W1 Bacillus sp. W2 | 菠萝皮Pineapple peels | 吸附法Adsorption | 82.32 | [ |
2,2',4,4'四溴化二苯醚 BDE-47 | 假单胞菌Plecoglossicida | 水葫芦Eichhornia crassipes | 吸附法Adsorption | 42.8 | [ |
六氯环己烷 α-HCH | 鞘氨醇单胞菌Sphingomonas(TSK-1) 诺卡菌Nocardioides(PD653) | 椰子壳Coconut shell | 吸附法Adsorption | 67.1 | [ |
污染物 Pollutant | 功能微生物 Microorganisms | 生物炭类型 Biochar type | 负载方式 Loaded method | 去除率 Removal ratio/% | 参考文献 Reference |
---|---|---|---|---|---|
氨氮 NH4+-N | 异养硝化细菌 Heterotrophic nitrifying bacteria | 稻壳衍生 Rice husk-derived | 吸附法 Adsorption | 90.93 | [ |
氨氮 NH4+-N | 鞘氨单胞菌 Sphingomonas sp. | 玉米秸秆 Maize straw | 吸附法 Adsorption | 63 | [ |
氨氮 NH4+-N | 苍白杆菌 Ochrobactrum sp. | 芦苇秸秆 Reed straw | 包埋法 Embedding | 79.39 | [ |
氨氮 NH4+-N | 硝化细菌 Nitrifying bacteria | 稻壳衍生 Rice hull derived | 包埋法 Embedding | 85 | [ |
氨氮 NH4+-N | 脱氮副球菌、假单胞菌和拉乌尔菌 Paracoccus denitrificans, Pseudomonas and Raoultella | 花生壳 Peanut shell | 吸附法包埋法 Adsorption Embedding | 97.9-99.1 | [ |
氨氮 NH4+-N | 木槿假单胞菌L1菌 Pseudomonas hibiscicola strain L1 | 花生壳 Peanut shell | 吸附法 Adsorption | 99.99 | [ |
氯四环素 Chlortetracycline | 蜡样芽孢杆菌 Bacillus cereus | 药渣 Erding medicine residues | 吸附法 Adsorption | 83.83 | [ |
三氯二苯脲 Initial triclocarban | 荧光假单胞菌 Pseudomonas fluorescens strain MC46 | 桉树枝 Eucalyptus branches | 吸附法 Adsorption | 96 | [ |
氯四环素 Chlortetracycline | 蜡样芽孢杆菌 Bacillus cereus | 中药渣 Chinese medicine residues | 吸附法 Adsorption | 85.42 ± 0.82 | [ |
氯四环素 Chlortetracycline | 枯草芽孢杆菌 Bacillus subtilis | 金银花残渣 Honeysuckle residue-derived | 吸附法 Adsorption | 78.35 | [ |
土霉素 Oxytetracycline | 分枝杆菌 Mycolicibacterium sp. | 磁性 Magnetic | 吸附法 Adsorption | 95.7 | [ |
土霉素 Oxytetracycline | 反硝化无色杆菌 Achromobacter denitrificans | 秸秆 Rice straw | 吸附法 Adsorption | 95.01-100 | [ |
磺胺甲噁唑 Sulfamethoxazole | 希瓦氏菌MR-1 Shewanella oneidensis MR-1 | 纳米级零价富铁 Nanoscale zero-valent iron-enriched | 吸附法 Adsorption | 100 | [ |
磺胺甲噁唑 Sulfamethoxazole | 副霉芽孢杆菌SDB4 Bacillus sp. SDB4 | 猪粪 Pig manure | 吸附法 Adsorption | 100 | [ |
土霉素 Oxytetracycline | 硝化微生物组 Nitrifying microbiome | 碱性改性 Alkaline-modified | 包埋法 Embedding method | >95 | [ |
环丙沙星 Ciprofloxacin | 克雷伯氏菌FC61 Klebsiella sp. FC61 | 纳米四氧化铁改性稻壳Nano iron tetroxide-modified rice husk | 吸附法 Adsorption method | 81.82 | [ |
表2 生物炭负载微生物在水体中氨氮及抗生素修复中的应用
Table 2 Application of biochar-loaded microbefor the remediation of ammonia-nitrogen and antibiotics in water
污染物 Pollutant | 功能微生物 Microorganisms | 生物炭类型 Biochar type | 负载方式 Loaded method | 去除率 Removal ratio/% | 参考文献 Reference |
---|---|---|---|---|---|
氨氮 NH4+-N | 异养硝化细菌 Heterotrophic nitrifying bacteria | 稻壳衍生 Rice husk-derived | 吸附法 Adsorption | 90.93 | [ |
氨氮 NH4+-N | 鞘氨单胞菌 Sphingomonas sp. | 玉米秸秆 Maize straw | 吸附法 Adsorption | 63 | [ |
氨氮 NH4+-N | 苍白杆菌 Ochrobactrum sp. | 芦苇秸秆 Reed straw | 包埋法 Embedding | 79.39 | [ |
氨氮 NH4+-N | 硝化细菌 Nitrifying bacteria | 稻壳衍生 Rice hull derived | 包埋法 Embedding | 85 | [ |
氨氮 NH4+-N | 脱氮副球菌、假单胞菌和拉乌尔菌 Paracoccus denitrificans, Pseudomonas and Raoultella | 花生壳 Peanut shell | 吸附法包埋法 Adsorption Embedding | 97.9-99.1 | [ |
氨氮 NH4+-N | 木槿假单胞菌L1菌 Pseudomonas hibiscicola strain L1 | 花生壳 Peanut shell | 吸附法 Adsorption | 99.99 | [ |
氯四环素 Chlortetracycline | 蜡样芽孢杆菌 Bacillus cereus | 药渣 Erding medicine residues | 吸附法 Adsorption | 83.83 | [ |
三氯二苯脲 Initial triclocarban | 荧光假单胞菌 Pseudomonas fluorescens strain MC46 | 桉树枝 Eucalyptus branches | 吸附法 Adsorption | 96 | [ |
氯四环素 Chlortetracycline | 蜡样芽孢杆菌 Bacillus cereus | 中药渣 Chinese medicine residues | 吸附法 Adsorption | 85.42 ± 0.82 | [ |
氯四环素 Chlortetracycline | 枯草芽孢杆菌 Bacillus subtilis | 金银花残渣 Honeysuckle residue-derived | 吸附法 Adsorption | 78.35 | [ |
土霉素 Oxytetracycline | 分枝杆菌 Mycolicibacterium sp. | 磁性 Magnetic | 吸附法 Adsorption | 95.7 | [ |
土霉素 Oxytetracycline | 反硝化无色杆菌 Achromobacter denitrificans | 秸秆 Rice straw | 吸附法 Adsorption | 95.01-100 | [ |
磺胺甲噁唑 Sulfamethoxazole | 希瓦氏菌MR-1 Shewanella oneidensis MR-1 | 纳米级零价富铁 Nanoscale zero-valent iron-enriched | 吸附法 Adsorption | 100 | [ |
磺胺甲噁唑 Sulfamethoxazole | 副霉芽孢杆菌SDB4 Bacillus sp. SDB4 | 猪粪 Pig manure | 吸附法 Adsorption | 100 | [ |
土霉素 Oxytetracycline | 硝化微生物组 Nitrifying microbiome | 碱性改性 Alkaline-modified | 包埋法 Embedding method | >95 | [ |
环丙沙星 Ciprofloxacin | 克雷伯氏菌FC61 Klebsiella sp. FC61 | 纳米四氧化铁改性稻壳Nano iron tetroxide-modified rice husk | 吸附法 Adsorption method | 81.82 | [ |
[1] | Zhang HY, Yuan XZ, Xiong T, et al. Bioremediation of co-contaminated soil with heavy metals and pesticides: influence factors, mechanisms and evaluation methods[J]. Chem Eng J, 2020, 398: 125657. |
[2] | 环境保护部, 国土资源部. 全国土壤污染状况调查公报[R]. 北京: 中国政府网, 2014. |
Ministry of Environmental Protection, Ministry of Natural Resources. National Soil Pollution Survey Report[R]. Beijing: Chinese government network, 2014. | |
[3] | Chen YG, He XLS, Huang JH, et al. Impacts of heavy metals and medicinal crops on ecological systems, environmental pollution, cultivation, and production processes in China[J]. Ecotoxicol Environ Saf, 2021, 219: 112336. |
[4] | 广东省生态环境厅. 2023年广东省生态环境状况公报[R]. 广州: 广东省生态环境厅, 2024. |
Ecological environment of Guangdong province. Bulletin on the Ecological Environment Status of Guangdong Province in 2023[R]. Guangzhou: Ecological environment of Guangdong province, 2024. | |
[5] | Gadd GM. Metals, minerals and microbes: geomicrobiology and bioremediation[J]. Microbiology, 2010, 156(Pt 3): 609-643. |
[6] | Gałązka A, Jankiewicz U. Endocrine disrupting compounds(nonylphenol and bisphenol A)-sources, harmfulness and laccase-assisted degradation in the aquatic environment[J]. Microorganisms, 2022, 10(11): 2236. |
[7] | Zhan PR, Liu W. Use of fluidized bed biofilter and immobilized Rhodopseudomonas palustris for ammonia removal and fish health maintenance in a recirculation aquaculture system[J]. Aquac Res, 2013, 44(3): 327-334. |
[8] | Liao XB, Zou RS, Li BX, et al. Biodegradation of chlortetracycline by acclimated microbiota[J]. Process Saf Environ Prot, 2017, 109: 11-17. |
[9] | Azeem M, Arockiam Jeyasundar PGS, Ali A, et al. Cow bone-derived biochar enhances microbial biomass and alters bacterial community composition and diversity in a smelter contaminated soil[J]. Environ Res, 2023, 216(Pt 1): 114278. |
[10] | Wang H, Huang QN, Zhang Y, et al. Biochar decreases soil cadmium availability and regulates expression levels of Cd uptake/transport-related genes to reduce Cd translocation in rice[J]. Rice Sci, 2024 |
[11] | Peng Q, Wang P, Yang C, et al. Remediation effect of walnut shell biochar on Cu and Pb co-contaminated soils in different utilization types[J]. J Environ Manag, 2024, 362: 121322. |
[12] | Li SS, Wang PP, Liu XG, et al. Polyoxymethylene passive samplers to assess the effectiveness of biochar by reducing the content of freely dissolved fipronil and ethiprole[J]. Sci Total Environ, 2018, 630: 960-966. |
[13] | 陈浩宇, 段友丽. 不同生物炭对水中氨氮的吸附特性及影响因素对比[J]. 净水技术, 2022, 41(6): 71-78, 95. |
Chen HY, Duan YL. Contrast of adsorption property and influencing factors of different biochar for ammonia nitrogen removal in water[J]. Water Purif Technol, 2022, 41(6): 71-78, 95. | |
[14] | Tu C, Wei J, Guan F, et al. Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil[J]. Environ Int, 2020, 137: 105576. |
[15] | 张倩茹, 冀琳宇, 高程程, 等. 改性生物炭的制备及其在环境修复中的应用[J]. 农业环境科学学报, 2021, 40(5): 913-925. |
Zhang QR, Ji LY, Gao CC, et al. Preparation of modified biochar and its application in environmental remediation[J]. J Agro Environ Sci, 2021, 40(5): 913-925. | |
[16] | Muneer B, Iqbal MJ, Shakoori FR, et al. Isolation, identification and cadmium processing of Pseudomonas aeruginosa(EP-Cd1)isolated from soil contaminated with electroplating industrial wastewater[J]. Pakistan Journal of Zoology, 2016, 48(5):1495-1501. |
[17] | Taha M, Shahsavari E, Aburto-Medina A, et al. Bioremediation of biosolids with Phanerochaete chrysosporium culture filtrates enhances the degradation of polycyclic aromatic hydrocarbons(PAHs)[J]. Appl Soil Ecol, 2018, 124: 163-170. |
[18] |
Rivelli V, Franzetti A, Gandolfi I, et al. Persistence and degrading activity of free and immobilised allochthonous bacteria during bioremediation of hydrocarbon-contaminated soils[J]. Biodegradation, 2013, 24(1): 1-11.
doi: 10.1007/s10532-012-9553-x pmid: 22555628 |
[19] | Pérez Vargas J, Viguera Carmona SE, Zamudio Moreno E, et al. Bioremediation of soils from oil spill impacted sites using bioaugmentation with biosurfactants producing, native, free-living nitrogen fixing bacteria[J]. Rev Int Contam Ambie, 2017, 33(esp01): 105-114. |
[20] | Gao MZ, Ling N, Tian HY, et al. Toxicity, physiological response, and biosorption mechanism of Dunaliella salina to copper, lead, and cadmium[J]. Front Microbiol, 2024, 15: 1374275. |
[21] | Wang LL, Liu YM, Shu XL, et al. Complexation and conformation of lead ion with poly-γ-glutamic acid in soluble state[J]. PLoS One, 2019, 14(9): e0218742. |
[22] | 何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. |
He J, Chu J, Liu HL, et al. Research advances in biogeotechnologies[J]. Chin J Geotech Eng, 2016, 38(4): 643-653. | |
[23] | Cid-Barrio L, Bouzas-Ramos D, Salinas-Castillo A, et al. Quantitative assessment of cellular uptake and differential toxic effects of HgSe nanoparticles in human cells[J]. J Anal at Spectrom, 2020, 35(9): 1979-1988. |
[24] | Huang JH. Impact of microorganisms on arsenic biogeochemistry: a review[J]. Water Air Soil Pollut, 2014, 225(2): 1848. |
[25] | 姜恒丽, 崔元璐, 齐学洁, 等. 海藻酸钠-壳聚糖微胶囊载体在组织工程研究中的应用[J]. 中国组织工程研究, 2014, 18(3): 412-419. |
Jiang HL, Cui YL, Qi XJ, et al. Alginate-chitosan microcapsule in tissue engineering research[J]. Chin J Tissue Eng Res, 2014, 18(3): 412-419. | |
[26] |
Zhu XM, Chen BL, Zhu LZ, et al. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review[J]. Environ Pollut, 2017, 227: 98-115.
doi: S0269-7491(16)32228-X pmid: 28458251 |
[27] | Bai XF, Li ZF, Zhang YZ, et al. Recovery of ammonium in urine by biochar derived from faecal sludge and its application as soil conditioner[J]. Waste Biomass Valorization, 2018, 9(9): 1619-1628. |
[28] | 金明兰, 赵海川, 李华南, 等. 秸秆生物炭与生物菌剂协同处理土壤中重金属和抗生素的研究[J/OL]. 北方园艺, 2024. http://kns.cnki.net/kcms/detail/23.1247.s.20240409.0858.003.html. |
Jin ML, Zhao HC, Li HN, et al. Biochar and microbial agents soil synergistic treatment of heavy metals and antibiotics in pollutant soil by straw[J/OL]. Northern Horticulture, 2024. http://kns.cnki.net/kcms/detail/23.1247.s.20240409.0858.003.html. | |
[29] |
Samonin VV, Elikova EE. A study of the adsorption of bacterial cells on porous materials[J]. Mikrobiologiia, 2004, 73(6): 810-816.
pmid: 15688940 |
[30] | Abit SM, Bolster CH, Cai P, et al. Influence of feedstock and pyrolysis temperature of biochar amendments on transport of Escherichia coli in saturated and unsaturated soil[J]. Environ Sci Technol, 2012, 46(15): 8097-8105. |
[31] | Sathishkumar K, Li Y, Sanganyado E. Electrochemical behavior of biochar and its effects on microbial nitrate reduction: role of extracellular polymeric substances in extracellular electron transfer[J]. Chem Eng J, 2020, 395: 125077. |
[32] |
Flowers L, Ohnishi ST, Penning TM. DNA strand scission by polycyclic aromatic hydrocarbon o-quinones: role of reactive oxygen species, Cu(II)/Cu(I)redox cycling, and o-semiquinone anion radicals[J]. Biochemistry, 1997, 36(28): 8640-8648.
pmid: 9214311 |
[33] | Kizito S, Luo HZ, Lu JX, et al. Role of nutrient-enriched biochar as a soil amendment during maize growth: exploring practical alternatives to recycle agricultural residuals and to reduce chemical fertilizer demand[J]. Sustainability, 2019, 11(11): 3211. |
[34] | Łapczyńska-Kordon B, Ślipek Z, Słomka-Polonis K, et al. Physicochemical properties of biochar produced from goldenrod plants[J]. Materials(Basel), 2022, 15(7): 2615. |
[35] |
Kloss S, Zehetner F, Dellantonio A, et al. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties[J]. J Environ Qual, 2012, 41(4): 990-1000.
doi: 10.2134/jeq2011.0070 pmid: 22751041 |
[36] | Zheng ZJ, Ali A, Su JF, et al. Self-immobilized biochar fungal pellet combined with bacterial strain H29 enhanced the removal performance of cadmium and nitrate[J]. Bioresour Technol, 2021, 341: 125803. |
[37] | Wang L, Chen HR, Wu JZ, et al. Effects of magnetic biochar-microbe composite on Cd remediation and microbial responses in paddy soil[J]. J Hazard Mater, 2021, 414: 125494. |
[38] | Zhang Y, Yin QX, Guo LL, et al. Chicken manure-derived biochar enhanced the potential of Comamonas testosteroni ZG2 to remediate Cd contaminated soil[J]. Environ Geochem Health, 2024, 46(6): 198. |
[39] | Qi WY, Chen H, Wang Z, et al. Biochar-immobilized Bacillus megaterium enhances Cd immobilization in soil and promotes Brassica chinensis growth[J]. J Hazard Mater, 2023, 458: 131921. |
[40] | Qi X, Xiao SQ, Chen XM, et al. Biochar-based microbial agent reduces U and Cd accumulation in vegetables and improves rhizosphere microecology[J]. J Hazard Mater, 2022, 436: 129147. |
[41] | Chang JJ, Duan YJ, Dong J, et al. Bioremediation of Hg-contaminated soil by combining a novel Hg-volatilizing Lecythophora sp. fungus, DC-F1, with biochar: performance and the response of soil fungal community[J]. Sci Total Environ, 2019, 671: 676-684. |
[42] | Huang YT, Liu T, Liu J, et al. Exceptional anti-toxic growth of water spinach in arsenic and cadmium co-contaminated soil remediated using biochar loaded with Bacillus aryabhattai[J]. J Hazard Mater, 2024, 469: 133966. |
[43] | Xiong BJ, Zhang YC, Hou YW, et al. Enhanced biodegradation of PAHs in historically contaminated soil by M. gilvum inoculated biochar[J]. Chemosphere, 2017, 182: 316-324. |
[44] | Zhou X, Sun YH, Wang TT, et al. Remediation potential of an immobilized microbial consortium with corn straw as a carrier in polycyclic aromatic hydrocarbons contaminated soil[J]. J Hazard Mater, 2024, 469: 134091. |
[45] | Lu JF, Liu YX, Zhang RL, et al. Biochar inoculated with Pseudomonas putida alleviates its inhibitory effect on biodegradation pathways in phenanthrene-contaminated soil[J]. J Hazard Mater, 2024, 461: 132550. |
[46] | Cui CZ, Shen JM, Zhu Y, et al. Bioremediation of phenanthrene in saline-alkali soil by biochar- immobilized moderately halophilic bacteria combined with Suaeda salsa L[J]. Sci Total Environ, 2023, 880: 163279. |
[47] | Song LC, Niu XG, Zhou B, et al. Application of biochar-immobilized Bacillus sp. KSB7 to enhance the phytoremediation of PAHs and heavy metals in a coking plant[J]. Chemosphere, 2022, 307(Pt 4): 136084. |
[48] | Wang CH, Gu LF, Ge SM, et al. Remediation potential of immobilized bacterial consortium with biochar as carrier in Pyrene-Cr(VI)co-contaminated soil[J]. Environ Technol, 2019, 40(18): 2345-2353. |
[49] | Qi X, Zhu MH, Yuan YB, et al. Bioremediation of PBDEs and heavy metals co-contaminated soil in e-waste dismantling sites by Pseudomonas plecoglossicida assisted with biochar[J]. J Hazard Mater, 2023, 460: 132408. |
[50] | Takagi K. Study on the biodegradation of persistent organic pollutants(POPs)[J]. J Pestic Sci, 2020, 45(2): 119-123. |
[51] | Bargaz A, Elhaissoufi W, Khourchi S, et al. Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus[J]. Microbiol Res, 2021, 252: 126842. |
[52] | Wang CX, Ren J, Qiao X, et al. Ammonium removal efficiency of biochar-based heterotrophic nitrifying bacteria immobilization body in water solution[J]. Environ Eng Res, 2021, 26(1): 190451. |
[53] | Shao Y, Zhong H, Mao X, et al. Biochar-immobilized Sphingomonas sp. and Acinetobacter sp. isolates to enhance nutrient removal: potential application in crab aquaculture[J]. Aquacult Environ Interact, 2020, 12: 251-262. |
[54] | Sun PF, Huang X, Xing YX, et al. Immobilization of Ochrobactrum sp. on biochar/clay composite particle: optimization of preparation and performance for nitrogen removal[J]. Front Microbiol, 2022, 13: 838836. |
[55] | 赏国锋, 张涵, 沈逸菲, 等. 生物炭固定化硝化菌去除水样中氨氮的研究[J]. 上海交通大学学报: 农业科学版, 2014, 32(5): 44-47. |
Shang GF, Zhang H, Shen YF, et al. Removal of ammonia nitrogen in aqueous samples by biochar immobilized nitrifying bacteria[J]. J Shanghai Jiao Tong Univ Agric Sci, 2014, 32(5): 44-47. | |
[56] | 吴梦莉, 李洁, 智燕彩, 等. 微生物固定化生物炭对水体铵态氮去除效果的研究[J]. 农业环境科学学报, 2021, 40(5): 1071-1078. |
Wu ML, Li J, Zhi YC, et al. Synthesis of microbial immobilized biochar for the removal of ammonia nitrogen from aqueous solutions[J]. J Agro Environ Sci, 2021, 40(5): 1071-1078. | |
[57] | An Q, Ran BB, Deng SM, et al. Peanut shell biochar immobilized Pseudomonas hibiscicola strain L1 to remove electroplating mixed-wastewater[J]. J Environ Chem Eng, 2023, 11(2): 109411. |
[58] | Zhang SN, Wang JH, Wang SH, et al. Effective removal of chlortetracycline and treatment of simulated sewage by Bacillus cereus LZ01 immobilized on erding medicine residues biochar[J]. Biomass Convers Biorefin, 2024, 14(2): 2281-2291. |
[59] | Sonsuphab K, Toomsan W, Supanchaiyamat N, et al. Enhanced triclocarban remediation from groundwater using Pseudomonas fluorescens strain MC46 immobilized on agro-industrial waste-derived biochar: optimization and kinetic analysis[J]. J Environ Chem Eng, 2022, 10(3): 107610. |
[60] | Zhang SN, Wang JH. Removal of chlortetracycline from water by Bacillus cereus immobilized on Chinese medicine residues biochar[J]. Environ Technol Innov, 2021, 24: 101930. |
[61] | Zhang SN, Wang JH. Removal of chlortetracycline from water by immobilized Bacillus subtilis on honeysuckle residue-derived biochar[J]. Water Air Soil Pollut, 2021, 232(6): 236. |
[62] | Xia MM, Niu QY, Qu XY, et al. Simultaneous adsorption and biodegradation of oxytetracycline in wastewater by Mycolicibacterium sp. immobilized on magnetic biochar[J]. Environ Pollut, 2023, 339: 122728. |
[63] | Zhang SD, Hou JJ, Zhang XT, et al. Biochar-assisted degradation of oxytetracycline by Achromobacter denitrificans and underlying mechanisms[J]. Bioresour Technol, 2023, 387: 129673. |
[64] | Li YY, Zhu YE, Yan XR, et al. Strategy and mechanisms of sulfamethoxazole removal from aqueous systems by single and combined Shewanella oneidensis MR-1 and nanoscale zero-valent iron-enriched biochar[J]. Sci Total Environ, 2023, 883: 163676. |
[65] | Chen X, Lin H, Dong YB, et al. Mechanisms underlying enhanced bioremediation of sulfamethoxazole and zinc(II)by Bacillus sp. SDB4 immobilized on biochar[J]. J Clean Prod, 2022, 370: 133483. |
[66] | Nguyen AH, Youn S, Yang YY, et al. Alkaline-modified biochar and nitrifying microbiome synergistically mitigate the toxicity of oxytetracycline and its toxic by-products[J]. Chem Eng J, 2024, 481: 148527. |
[67] | Liang EL, Xu L, Su JF, et al. Nano iron tetroxide-modified rice husk biochar promoted Feammox performance of Klebsiella sp. FC61 and synergistically removed Ni2+ and ciprofloxacin[J]. Bioresour Technol, 2023, 382: 129183. |
[68] | Hargreaves JA. Nitrogen biogeochemistry of aquaculture ponds[J]. Aquaculture, 1998, 166(3/4): 181-212. |
[69] | 洪枫, 吴春香. 亚硝酸盐在小棚虾养殖中的危害与防治[J]. 科学养鱼, 2024(3): 60-61. |
Hong F, Wu CX. Harm and control of nitrite in shrimp culture in small shed[J]. Sci Fish Farming, 2024(3): 60-61. | |
[70] | Cheng ZW, Chen JM, Chen DZ, et al. Biodegradation of methyl Tert-butyl ether in a bioreactor using immobilized Methylibium petroleiphilumPM1 cells[J]. Water Air Soil Pollut, 2011, 214(1): 59-72. |
[71] | 郑惠东. 水环境中抗生素来源及对健康的影响[J]. 环境卫生学杂志, 2018, 8(1): 73-77. |
Zheng HD. The source of antibiotics in aquatic environment and its impact on human health[J]. J Environ Hyg, 2018, 8(1): 73-77. | |
[72] |
Wani AK, Akhtar N, Sher F, et al. Microbial adaptation to different environmental conditions: molecular perspective of evolved genetic and cellular systems[J]. Arch Microbiol, 2022, 204(2): 144.
doi: 10.1007/s00203-022-02757-5 pmid: 35044532 |
[73] | Oni BA, Oziegbe O, Olawole OO. Significance of biochar application to the environment and economy[J]. Ann Agric Sci, 2019, 64(2): 222-236. |
[74] | Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research[J]. Nature, 2014, 507(7491): 181-189. |
[75] | Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213): 1258096. |
[76] |
Quince C, Walker AW, Simpson JT, et al. Shotgun metagenomics, from sampling to analysis[J]. Nat Biotechnol, 2017, 35(9): 833-844.
doi: 10.1038/nbt.3935 pmid: 28898207 |
[1] | 张雅涵, 朱丽霞, 胡静, 朱亚静, 张雪婧, 曹叶中. 草甘膦在我国生物育种产业化应用中的机遇与挑战[J]. 生物技术通报, 2022, 38(11): 1-9. |
[2] | 朱永安, 王淼, 曹静, 喻鹤, 曹振, 金茂俊, 王静, 佘永新. 农药残留检测关键用酶固定化研究进展[J]. 生物技术通报, 2022, 38(1): 258-268. |
[3] | 赵杰宏;赵德刚;韩洁;. 转基因表达OPH提高番茄果实降解有机磷农药能力的研究[J]. , 2010, 0(12): 213-216. |
[4] | 李思经. 动物保健市场预测[J]. , 1994, 0(06): 29-30. |
[5] | 王颖. FDA批准使用牛生长激素增加牛奶产量[J]. , 1994, 0(04): 16-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||