[1] |
Shimomura O, Johnson FH, Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea[J]. J Cell Comp Physiol, 1962, 59: 223-239.
pmid: 13911999
|
[2] |
Rodriguez EA, Tran GN, Gross LA, et al. A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein[J]. Nat Methods, 2016, 13(9): 763-769.
doi: 10.1038/nmeth.3935
pmid: 27479328
|
[3] |
Schlechter RO, Jun H, Bernach M, et al. Chromatic bacteria - A broad host-range plasmid and chromosomal insertion toolbox for fluorescent protein expression in bacteria[J]. Front Microbiol, 2018, 9: 3052.
doi: 10.3389/fmicb.2018.03052
pmid: 30631309
|
[4] |
杨晓玫, 师尚礼. 红、黄、绿三种颜色荧光质粒导入大肠杆菌中的稳定性表达[J]. 甘肃农业大学学报, 2018, 53(3): 193-198.
|
|
Yang XM, Shi SL. Gene expression of red, yellow and green fluorescence plasmid stability after transferred in Escherichia coli[J]. J Gansu Agric Univ, 2018, 53(3): 193-198.
|
[5] |
Fan B, Chen XH, Budiharjo A, et al. Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein[J]. J Biotechnol, 2011, 151(4): 303-311.
doi: 10.1016/j.jbiotec.2010.12.022
pmid: 21237217
|
[6] |
蒋晓玲, 何鹏飞, 王娅玲, 等. 玉米内生细菌Y19的荧光标记及其在玉米体内的定殖应用效果[J]. 玉米科学, 2015, 23(3): 50-56.
|
|
Jiang XL, He PF, Wang YL, et al. GFP-tagging and colonization effect of an endophityic bacterial strain Y19 in maize[J]. J Maize Sci, 2015, 23(3): 50-56.
|
[7] |
Yi YL, Frenzel E, Spoelder J, et al. Optimized fluorescent proteins for the rhizosphere-associated bacterium Bacillus mycoides with endophytic and biocontrol agent potential[J]. Environ Microbiol Rep, 2018, 10(1): 57-74.
|
[8] |
Sun XL, Xu ZH, Xie JY, et al. Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions[J]. ISME J, 2022, 16(3): 774-787.
|
[9] |
Stuurman N, Pacios Bras C, Schlaman HR, et al. Use of green fluorescent protein color variants expressed on stable broad-host-range vectors to visualize rhizobia interacting with plants[J]. Mol Plant Microbe Interact, 2000, 13(11): 1163-1169.
|
[10] |
Mansfield J, Genin S, Magori S, et al. Top 10 plant pathogenic bacteria in molecular plant pathology[J]. Mol Plant Pathol, 2012, 13(6): 614-629.
doi: 10.1111/j.1364-3703.2012.00804.x
pmid: 22672649
|
[11] |
Elväng AM, Westerberg K, Jernberg C, et al. Use of green fluorescent protein and luciferase biomarkers to monitor survival and activity of Arthrobacter chlorophenolicus A6 cells during degradation of 4-chlorophenol in soil[J]. Environ Microbiol, 2001, 3(1): 32-42.
pmid: 11225721
|
[12] |
Li HF, Tian LY, Lian GL, et al. Engineering Vibrio alginolyticus as a novel chassis for PHB production from starch[J]. Front Bioeng Biotechnol, 2023, 11: 1130368.
|
[13] |
Hao LK, Liu XM, Wang HY, et al. Detection and validation of a small broad-host-range plasmid pBBR1MCS-2 for use in genetic manipulation of the extremely acidophilic Acidithiobacillus sp[J]. J Microbiol Methods, 2012, 90(3): 309-314.
doi: 10.1016/j.mimet.2012.06.003
pmid: 22705922
|
[14] |
王远宏, 李金云, 张力群, 等. 葡萄根癌病生防菌株E26中可接合转移的遗传因子的检测及功能初步分析[J]. 植物保护, 2010, 36(3): 47-51.
|
|
Wang YH, Li JY, Zhang LQ, et al. Preliminary characterization of conjugation genetic factor in biocontrol strain Agrobacterium vitis E26 against grape crown gall[J]. Plant Prot, 2010, 36(3): 47-51.
|
[15] |
韩明月. 解磷海洋菌的筛选及其在盐碱土改良中的应用[D]. 济南: 山东大学, 2021.
|
|
Han MY. Screening of phosphate-solubilizing marine bacteria and its application in saline-alkali soil improvement[D]. Jinan: Shandong University, 2021.
|
[16] |
Zhao YC, Li PX, Huang KH, et al. Control of postharvest soft rot caused by Erwinia carotovora of vegetables by a strain of Bacillus amyloliquefaciens and its potential modes of action[J]. World J Microbiol Biotechnol, 2013, 29(3): 411-420.
|
[17] |
Grevich JJ, Daniell H. Chloroplast genetic engineering: recent advances and future perspectives[J]. Crit Rev Plant Sci, 2005, 24(2): 83-107.
|
[18] |
Gomes L, Monteiro G, Mergulhão F. The impact of IPTG induction on plasmid stability and heterologous protein expression by Escherichia coli biofilms[J]. Int J Mol Sci, 2020, 21(2): 576.
|
[19] |
Hebisch E, Knebel J, Landsberg J, et al. High variation of fluorescence protein maturation times in closely related Escherichia coli strains[J]. PLoS One, 2013, 8(10): e75991.
|
[20] |
Meng W, Qiao K, Liu F, et al. Construction and application of a mCherry fluorescent labeling system for Stenotrophomonas AGS-1 from aerobic granular sludge[J]. FEMS Microbiol Lett, 2023, 370: fnad079.
|
[21] |
Li JW, Zhang YX. Relationship between promoter sequence and its strength in gene expression[J]. Eur Phys J E Soft Matter, 2014, 37(9): 44.
|
[22] |
Başaran TI, Berber D, Gökalsın B, et al. Extremophilic Natrinema versiforme against Pseudomonas aeruginosa quorum sensing and biofilm[J]. Front Microbiol, 2020, 11: 79.
|
[23] |
Sadhu L, Kumar K, Kumar S, et al. Chloroplasts evolved an additional layer of translational regulation based on non-AUG start codons for proteins with different turnover rates[J]. Sci Rep, 2023, 13(1): 896.
|
[24] |
Balleza E, Kim JM, Cluzel P. Systematic characterization of maturation time of fluorescent proteins in living cells[J]. Nat Methods, 2018, 15(1): 47-51.
doi: 10.1038/nmeth.4509
pmid: 29320486
|