[1] Vandepoele K, Raes J, De Veylder L, et al. Genome-wide analysis of core cell cycle genes in Arabidopsis[J]. Plant Cell, 2002, 14:903-916. [2] Wang G, Kong H, Sun Y, et al. Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins[J]. Plant Physiol, 2004, 135:1084-1099. [3] Menges M, Hennig L, Gruissem W, et al. Cell cycle-regulated gene expression in Arabidopsis[J]. J Biol Chem, 2002, 77:41987-42002. [4] Zhao XA, Harashima H, Dissmeyer N, et al. A general G1/S-phase cell-cycle control module in the flowering plant Arabidopsis thaliana[J]. PLoS Genetics, 2012, 8(8):e1002847. [5] Leene JV, Hollunder J, Eeckhout D, et al. Targeted interactomics rev-eals a complex core cell cycle machinery in Arabidopsis thaliana[J]. Molecular Systems Biology, 2010, 6:397-405. [6] Guo J, Song J, Wang F, et al. Genome-wide identification and expression analysis of rice cell cycle genes[J]. Plant Molecular Biology, 2007, 64(4):349-360. [7] Dori-Bachash M, Dassa B, Pietrokovski S, et al. Proteome-based comparative analyses of growth stages reveal new cell cycle-dependent functions in the predatory bacterium Bdellovibrio bacteriovorus[J]. Applied and Environmental Microbiology, 2008:7152-7162. [8] Agrawal GK, Rakwal R. Rice proteomics:A move toward expanded proteome coverage to comparative and functional proteomics uncovers the mysteries of rice and plant biology[J]. Proteomics, 2011, 11(9):1630-1649. [9] Neudecker T, Eder E, Deininger C, et al. Crotonaldehyde is mutagenic in Salmonella typhimurium TA100[J]. Environmental Molecular Mutagen, 1989, 14:146-148. [10] Czerny C, Eder E, Runger TM. Genotoxicity and mutagenicity of the a, b-unsaturated carbonyl compound crotonaldehyde(butenal)on a plasmid shuttle vector[J]. Mutation Research, 1998, 407:125-134. [11] Fernandes PH, Kanuri M, Nechev LV, et al. Mammalian cell muta-genesis of the DNA adducts of vinyl chloride and crotonaldehyde[J]. Environmental Molecular Mutagen, 2005, 45:455-459. [12] Jenes B, Pauk J. Plant regeneration from protoplast derived calli in rice(Oryza sativa L.)using dicamba[J]. Plant Science, 1989, 62(3):187-198. [13] Wessel D, Flügge UI. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids[J]. Analytical Biochemistry, 1984, 138(1):141-143. [14] 刘悦萍, 杨爱珍, 郭蓓, 等.适合水稻悬浮培养细胞蛋白质组分析的双向电泳技术[J].生物技术通报, 2010(11):82-86. [15] Bryant JA, Francis D. The plant cell cycle[J]. Annals of Botany, 2011, 107:1063. [16] Liu XY, Yang ZH, Pan XJ, et al. Gene expression profile and cytotoxicity of human bronchial epithelial cells exposed to crotonaldehyde[J]. Toxicology Letters, 2010a, 197(2):113-122. [17] Liu XY, Yang ZH, Pan XJ, et al. Crotonaldehyde induces oxidative stress and caspase-dependent apoptosis in human bronchial epithelial cells[J]. Toxicology Letters, 2010b, 195(1):90-98. [18] ER, Lee GJ, Vierling E. Evolution, structure and function of the small heat shock proteins in plants[J]. Journal of Experimental Botany, 1996, 47(3):325-338. [19] Mehlen P, Schulze-Osthoff K, Arrigo AP. Small stress proteins as novel regulators of apoptosis[J]. Journal of Biological Chemistry, 1996, 271(28):16510-16514. [20] Kamradt MC, Chen F, Sam S. The small heat shock protein alpha B-crystallin negatively regulates apoptosis during myogenic differentiation by inhibiting caspase-3 activation[J]. Journal of Biological Chemistry, 2002, 277(41):38731-38736. [21] Liu S, Li J, Tao Y, et al. Small heat shock protein alpha Bcrystallin binds to p53 to sequester its translocation to mitochondria during hydrogen peroxide-induced apoptosis[J]. Biochemical Biophysical Research Communications, 2007, 354(1):109-114. [22] J, Vierstra RD. The ubiquitin 26S proteasome proteolytic pathway[J]. Annual Review Plant Biology, 2004, 55:555-590. [23] W, Walz J, Zühl F, Seemüller E. The proteasome:Paradigm of a self compartmentalizing protease[J]. Cell, 1998, 92:367-380. [24] R, Lu P, O’Neil SD. Arabidopsis SKP1, a homologue of a cell cycle regulator gene, is predominantly expressed in meriste-matic cells[J]. Planta, 1998, 204(3):345-351. [25] Vierstra RD. The ubiquitin-26S proteasome system at the nexus of plant biology[J]. Nature Reviews Molecular Cell Biology, 2009, 10:385-397. [26] Ciechanover A, Orian A, Schwartz AL. Ubiquitin-mediated proteol-ysis:biological regulation via destruction[J]. Bioessays, 2000, 22:442-451. [27] CM. Mechanisms underlying ubiquitination[J]. Annual Review Biochemistry, 2001, 70:503-533. [28] HS, Desprez T, Santoni V, et al. The higher plant Arabidopsis thaliana encodes a functional CDC48 homologue which is highly expressed in dividing and expanding cells[J]. The EMBO Journal, 1995, 14:5626-5637. [29] Fröhlich KU, Fries HW, Rudiger M, et al. Yeast cell cycle protein CDC48p shows full-length homology to the mammalian protein VCP and is a member of a protein family involved in secretion, peroxisome formation, and gene expression[J]. Journal of Cell Biology, 1991, 114:443-453. [30] Shirogane T, Fukada T, Muller JM, et al. Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and Antiapoptosis[J]. Immunity, 1999, 11:709-719. [31] Müller JM, Deinhardt K, Rosewell L, et al. Targeted deletion of p97(VCP/CDC48)in mouse resultsin early embryonic lethality[J]. Biochemical and Biophysical Research Communications, 2007, 354:459-465. [32] Sookhee P, David MR, Sebastian YB. In planta analysis of the cell cycle-dependent localization of AtCDC48A and its critical roles in cell division, expansion, and differentiation[J]. Plant Physiology, 2008, 148:246-258. [33] Hansol B, Soo MC, Seong WY. Suppression of the ER-localized AAA ATPase NgCDC48 inhibits tobacco growth and development[J]. Molecular Cells, 2009, 28:57-65. [34] Ralf JB, Hans Z. Mechanisms of Cdc48/VCP-mediated cell death-from yeast apoptosis to human disease[J]. Biochimica et Biophy-sica Acta, 2008, 1783:1418-1435. [35] Rati V, Robert O, Ruihua F, et al. Cdc48/p97 mediates UV-dependent turnover of RNA pol II[J]. Molecular Cell, 2010, 41:82-92. [36] Yeung HO, Kloppsteck P, Niwa H, et al. Insights into adaptor bin-ding to the AAA protein[J]. Biochemical Society Transactions, 2008, 36:62-72. [37] Müssig C, Fischer S, Altmann T. Brassinosteroid-regulated gene expression[J]. Plant Physiology, 2002, 129(7):1241-1251. [38] Mehra A, Wrana JL. TGF-β and the Smad signal transduction pathway[J]. Biochemistry and Cell Biology, 2002, 80(5):605-622. [39] Heike R, Herter T, Grishkovskaya I, et al. Crystal structure and functional characterization of a glucosamine-6-phosphate N-acetyl-transferase from Arabidopsis thaliana[J]. Biochemcal Journal, 2012, 443, 427-437. [40] Nozakia M, Sugiyamab M, Duanc J, et al. A missense mutation in the glucosamine-6-phosphate N-Acetyltransferase-encoding gene causes temperature-dependent growth defects and ectopic lignin deposition in Arabidopsis[J]. The Plant Cell, 2012, 24(8):3366-3379. [41] Jiang H, Wang S, Dang L, et al. A novel short-root gene encodes a glucosamine-6-phosphate acetyltransferase required for maintaining normal root cell shape in rice[J]. Plant Physiology, 2005, 138:232-242. [42] Riou-Khamlichi C, Menges M, Sandra HJM, et al. Sugar control of the plant cell cycle:differential regulation of Arabidopsis D-type cyclin gene expression[J]. Molecular and Cellular Biology, 2000, 7:4513-4521. [43] Yang R, Tang Q, Wang H, et al. Analyses of two rice(Oryza sativa)cyclin-dependent kinase inhibitors and effects of transgenic expression of OsiICK6 on plant growth and development[J]. Annals of Botany, 2011, 107:1087-1101. [44] Arpat AB, Waugh M, Sullivan JP, et al. Functional genomics of cell elongation in developing cotton fibers[J]. Plant Molecular Biology, 2004, 54:911-929. |