[1] Sreekrishna K, Brankamp RG, Kropp KE, et al. Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris[J]. Gene, 1997, 190(1):55-62.
[2] Cereghino JL, Cregg JM. Heterologous protein expression in the methylotrophic yeast Pichia pastoris[J]. FEMS Microbiology Reviews, 2000, 24(1):45-66.
[3] Hollenberg CP, Gellissen G. Production of recombinant proteins by methylotrophic yeasts[J]. Current Opinion in Biotechnology, 1997, 8(5):554-560.
[4] 唐元家, 余柏松. 巴斯德毕赤酵母表达系统[J]. 国外医药:抗生素分册, 2002, 23(6):246-250, 271.
[5] 欧阳立明, 张惠展, 张嗣良, 刘志敏. 巴斯德毕赤酵母的基因表达系统研究进展[J]. 生物化学与生物物理进展, 2000, 27(2):151-154.
[6] 郝晶. 毕赤酵母生产重组蛋白A工艺研究[D]. 大连:大连理工大学, 2013.
[7] Ma X, Yao B, Zheng W, et al. Comparative study on characterization of recombinant B subunit of E. coli heat-labile enterotoxin(rLTB)prepared from E. coli and P. pastoris[J]. Journal of Microbiology and Biotechnology, 2010, 20(3):550-557.
[8] Xie J, Zhou Q, Du P, et al. Use of different carbon sources in cultivation of recombinant Pichia pastoris for angiostatin production[J]. Enzyme and Microbial Technology, 2005, 36(2):210-216.
[9] Macauley-Patrick S, Fazenda ML, McNeil B, et al. Heterologous protein production using the Pichia pastoris expression system[J]. Yeast, 2005, 22(4):249-270.
[10] Cregg JM, Cereghino JL, Shi J, et al. Recombinant protein expression in Pichia pastoris[J]. Molecular Biotechnology, 2000, 16(1):23-52.
[11] Li P, Anumanthan A, Gao XG, et al. Expression of recombinant proteins in Pichia pastoris[J]. Applied Biochemistry and Biotechnology, 2007, 142(2):105-124.
[12] Hartner F, Glieder A. Regulation of methanol utilisation pathway genes in yeasts[J]. Microbial Cell Factories, 2006, 5(1):39.
[13] Jahic M, Gustavsson M, Jansen AK, et al. Analysis and control of proteolysis of a fusion protein in Pichia pastoris fed-batch processes[J]. Journal of Biotechnology, 2003, 102(1):45-53.
[14] Daly R, Hearn MTW. Expression of heterologous proteins in Pichia pastoris:a useful experimental tool in protein engineering and production[J]. J Mol Recognit, 2005, 18(2):119-138.
[15] Rogelj B, ?trukelj B, Bosch D, et al. Expression, purification, and characterization of equistatin in Pichia pastoris[J]. Protein Expression and Purification, 2000, 19(3):329-334.
[16] 姚学勤. 甘油去阻遏表型巴斯德毕赤酵母(Pichia Pastoris)的构建及其初步研究[D]. 北京:中国人民解放军军事医学科学院, 2009.
[17] 李健仔. 巴斯德毕赤酵母外源基因表达系统[J]. 生物学通报, 2005, 40(3):21-23.
[18] 刘逸寒, 薄嘉鑫, 乔婧, 等. 毕赤酵母表面展示磷脂酶D高密度发酵优化[J]. 食品研究与开发, 2012, 33(8):184-187.
[19] 李萌. 毕赤酵母表达系统糖基化过程中低甘露糖链的构建[D]. 无锡:江南大学, 2012.
[20] Mansur M, Cabello C, Hernández L, et al. Multiple gene copy number enhances insulin precursor secretion in the yeast Pichia pastoris[J]. Biotechnology Letters, 2005, 27(5):339-345.
[21] Shi NQ, Davis B, Sherman F, et al. Disruption of the cytochrome c gene in xylose-utilizing yeast Pichia pastoris leads to higher ethanol production[J]. Yeast, 1999, 15(11):1021-1030.
[22] 张宇婷, 曹雅男, 解绶启, 等. 密码子优化提高 aiiaB546毕赤酵母表达活性[J]. 水生生物学报, 2013, 37(1):164-167.
[23] Sinclair G, Choy FYM. Synonymous codon usage bias and the expression of human glucocerebrosidase in the methylotrophic yeast, Pichia pastoris[J]. Protein Expression and Purification, 2002, 26(1):96-105.
[24] 龚香艺, 丁重阳, 刘立明, 等. 一种增加重组毕赤酵母拷贝数提高胰岛素前体产量的策略[J]. 微生物学报, 2013, 53(6):545-552.
[25] 付莉莉. 毕赤酵母表达HSA融合蛋白过程中降解的初步研究[D]. 无锡:江南大学, 2012.
[26] 陆永超, 蒋琳. 毕赤酵母高效表达策略概述[J]. 微生物学免疫学进展, 2013, 41(1):70-76.
[27] 夏姗, 武福军, 赵洪亮, 等. 毕赤酵母工程菌高密度发酵的研究进展[J]. 生物技术通讯, 2013(1):109-112.
[28] Cereghino GPL, Cereghino JL, Ilgen C, et al. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris[J]. Current Opinion in Biotechnology, 2002, 13(4):329-332.
[29] Krainer FW, Dietzsch C, Hajek T, et al. Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway[J]. Microb Cell Fact, 2012, 11(1):22-35.
[30] 林俊涵. 毕赤酵母高密度发酵工艺的研究[J]. 中国生物工程杂志, 2009, 29(5):120-125.
[31] 田运佳. 植酸酶生产过程主要影响因素研究[D]. 石家庄:河北科技大学, 2010.
[34] Jacobs PP, Inan M, Festjens N, et al. Fed-batch fermentation of GM-CSF-producing glycoengineered Pichia pastoris under controlled specific growth rate[J]. Microbial Cell Factories, 2010, 9:93.
[35] 王辉林, 李江华, 刘龙, 等. 恒细胞密度发酵策略提高重组毕赤酵母生产碱性果胶酶的表达效率[J]. 生物工程学报, 2012, 28(8):937-949.
[36] Zhu T, You L, Gong F, et al. Combinatorial strategy of sorbitol feeding and low-temperature induction leads to high-level production of alkaline β-mannanase in Pichia pastoris[J]. Enzyme and Microbial Technology, 2011, 49(4):407-412.
[37] 高敏杰, 史仲平. 甲醇营养型重组毕赤酵母高效表达外源蛋白过程的控制与优化(英文)[J]. 中国化学工程学报, 2013, 21(2):216-226.
[38] Soyaslan E?, ?al?k P. Enhanced recombinant human erythropoietin production by Pichia pastoris in methanol fed-batch/sorbitol batch fermentation through pH optimization[J]. Biochemical Engineering Journal, 2011, 55(1):59-65.
[39] 李洪淼, 王红宁, 许钦坤. 毕赤酵母高密度发酵研究进展[J]. 生物技术通讯, 2005, 16(2):210-212.
[40] 王永强, 钱江潮, 储炬, 等. 甲醇浓度和VHb蛋白表达对重组毕赤酵母生产SAM的影响[J]. 华东理工大学学报:自然科学版, 2008, 34(3):354-359.
[41] 邓兵兵, 方宏清, 薛冲, 等. 甲醇营养型酵母高密度培养过程中甲醇和乙醇的GC快速检测[J]. 工业微生物, 2001, 31(2):26-29.
[42] ?elik E, ?al?k P, Oliver SG. Metabolic flux analysis for recombinant protein production by Pichia pastoris using dual carbon sources:Effects of methanol feeding rate[J]. Biotechnology and Bioengineering, 2010, 105(2):317-329.
[43] 汪志浩, 张东旭, 李江华, 等. 混合碳源流加对重组毕赤酵母生产碱性果胶酶的影响[J]. 生物工程学报, 2009, 25(12):1955-1961.
[44] 沈伊娜, 顾磊, 张娟, 等. 双碳源流加对重组毕赤酵母高效表达葡萄糖氧化酶的影响[J]. 生物工程学报, 2013(7):927-936.
[45] Gao MJ, Li Z, Yu RS, et al. Methanol/sorbitol co-feeding induction enhanced porcine interferon-α production by P. pastoris associated with energy metabolism shift[J]. Bioprocess and Biosystems Engineering, 2012, 35(7):1125-1136. |