[1] Tanaka Y, Ohmiya A. Seeing is believing:engineering anthocyanin and carotenoid biosynthetic pathways[J]. Current Opinion in Biotechnology, 2008, 19(2):190-197.
[2] Holton TA, Cornish EC. Genetics and biochemistry of anthocyanin biosynthesis[J]. Plant Cell, 1995, 7(7):1071- 1083.
[3] Ramsay NA, Glover BJ. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity[J]. Trends in Plant Science, 2005, 10(2):63-70.
[4] Smith TF, Gaitatzes C, Saxena K, et al. The WD repeat:a common architecture for diverse functions[J]. Trends in Biochemical Sciences, 1999, 24(5):181-185.
[5] Ben-Simhon Z, Judeinstein S, Nadler-Hassar T, et al. A pomegranate(Punica granatum L.)WD40-repeat gene is a functional homologue of Arabidopsis TTG1 and is involved in the regulation of anthocyanin biosynthesis during pomegranate fruit development[J]. Planta, 2011, 234(5):865-881.
[6] Taheri A, Jayasankar S, Cline JA, et al. A WD-repeat gene from peach(Prunus persica L.)is a functional ortholog of Arabidopsis thaliana TRANSPARENT TESTA GLABRA1[J]. In Vitro Cellular & Developmental Biology-Plant, 2012, 48(1):23-29.
[7] Matus J, Poupin M, Ca?ón P, et al. Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine(Vitis vinifera L.)[J]. Plant Molecular Biology, 2010, 72(6):607-620.
[8] Yamazaki M, Makita Y, Springob K, et al. Regulatory mechanisms for anthocyanin biosynthesis in chemotypes of Perilla frutescens var. crispa[J]. Biochemical Engineering J, 2003, 14(3):191-197.
[9] Carey CC, Strahle JT, Selinger DA, et al. Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana[J]. Plant Cell, 2004, 16(2):450-464.
[10] Neer EJ, Schmidt CJ, Nambudripad R, Smith TF. The ancient regulatory-protein family of WD-repeat proteins[J]. Nature, 1994, 371:297-300.
[11] van Nocker S, Ludwig P. The WD-repeat protein superfamily in Arabidopsis:conservation and divergence in structure and function[J]. BMC Genomics, 2003, 4(1):50.
[12] 郭闻文, 董丽, 王莲英, 等. 几个牡丹切花品种的采后衰老特征与水分平衡研究[J]. 林业科学, 2004, 40(4):89-93.
[13] 孟丽, 周琳, 张明姝, 等. 一种有效的花瓣总RNA的提取方法[J]. 生物技术, 2006, 16(1):38-40.
[14] Humphries JA, Walker AR, Timmis JN, et al. Two WD-repeat genes from cotton are functional homologues of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1(TTG1)gene[J]. Plant Molecular Biology, 2005, 57(1):67-81.
[15] Larkin JC, Oppenheimer DG, Lloyd AM, et al. Roles of the Glabrous1 and Transparent Testa Glabra genes in Arabidopsis trichome development[J]. Plant Cell, 1994, 6(8):1065-1076.
[16] Larkin JC, Walker JD, Bolognesi-Winfield AC, et al. Allele-specific interactions between ttg and gl1 during trichome development in Arabidopsis thaliana[J]. Genetics, 1999, 151(4):1591-1604.
[17] Walker AR, Davison PA, Bolognesi-Winfield AC, et al. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein[J]. Plant Cell, 1999, 11(7):1337-1349.
[18] Payne CT, Zhang F, Lloyd AM. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1[J]. Genetics, 2000, 156(3):1349-1362.
[19] de Vetten N, Quattrocchio F, Mol J, et al. The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals[J]. Genes & Development, 1997, 11(11):1422-1434.
|