[1] 曹秀华, 阮奇城, 林海红, 等. 纤维燃料乙醇生产中木糖发酵的研究进展[J]. 中国麻业科学, 2010, 32(3):166-182.
[2] 谢丽萍, 王正祥, 诸葛健. 利用可再生资源生产酒精的细菌、酵母中的代谢工程[J]. 食品与发酵工业, 2002, 127(112):63-68.
[3] Jeffries TW, Jin YS. Metabolic engineering for improved fermentation of pentoses by yeasts[J]. Applied Microbiology and Biotechnology, 2004, 63(5):495-509.
[4] Guo T, Liang DF, Bao XM. Establishment and ethanol fermentation of a xylose metabolic pathway in an industrial strain of Saccharomyces cerevisiae[J]. Sugarcane and Canesugar, 2007, 3:26-29.
[5] Johansson B. Hahn-H?gerdal B. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001[J]. FEMS Yeast Research, 2002, 2(3):277-282.
[6] Wahlbom CF, Zyl WH, J?nsson LJ, et al. Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054[J]. FEMS Yeast Res, 2003, 3(3):319-326.
[7] Johansson B, Christensson C, Hobley T, et al. Xylulokinase overexp-ression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermen-tation of xylose and lignocellulosic hydrolysate[J]. Appl Environ Microbiol, 2001, 67(9):4249-4255.
[8] Wang Y, Shi WL, Liu XY, et al. Establishment of a xylose metabolic pathway in an industrial strain of Saccharomyces cerevisiae[J]. Biotechnology Letters, 2004, 26(11):885-890.
[9] Lee SH. Kodaki T, Park YC, et al. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae[J]. Journal of Biotechnology, 2012, 158(4):184-191.
[10] Katahira S, Mizuike A, Fukuda H, et al. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain[J]. Applied Microbiology and Biotechnology, 2006, 72(6):1136-1143.
[11] Eliasson A, Hofmeyr J-HS, Pedler S, et al. The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae[J]. Enzyme Microbial Technology, 2001, 29(4/5):288-297.
[12] Matsushika A, Sawayama S. Comparative study on a series of reco-mbinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase[J]. Enzyme Microbi Technol, 2011, 48:466-471.
[13] 张洁宁, 田沈, 杨秀山. 提高木糖代谢能力的酿酒酵母Y5-X3的初步构建[J] . 可再生能源, 2012, 30(4):47-51.
[14] Matsushika A, Watanabe S, Kodaki T, et al. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases eth- anol production from xylose in recombinant Saccharomyces cerevis-iae[J]. Appl Microbiol Biotechnol, 2008, 81(2):243-255.
[15] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analy Biochem, 1976, 72(1/2):248-254.
[16] Steinmetz EJ, Warren CL, Kuehner JN, et al. Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase[J]. Molecular Cell, 2006, 24(5):735-746.
[17] Watanabe S, Salen AA, Pack SP, et al. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase[J]. Journal of Biotechnology, 2007, 130(3):316-319.
[18] Peng BY, Shen Y, Li XW, et al. Improvement of xylose fermentation in respiratory-deficien xylose-fermenting Saccharomyces cerevisiae[J]. Metabolic Engineering, 2012, 14 (1):9-18.
[19] Xiong MY, Chen GH, Barford J, et al. Alteration of xylose reductase coenzyme preference to improve ethanol production by Saccharomyces cerevisiae from high xylose concentrations[J]. Bioresource Technology, 2011, 102 (19):9206-9215.
[20] Jin YS, Ni HY, Laplaza JM, et al. Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity[J]. Applied and Environmental Microbiology, 2003, 69(1):495-503.
[21] Rizzi M, Harwart K, Erlemann P, et al. Purification and properties of the NAD+-xylitol-dehydrogenase from the yeast Pichia stipitis [J]. Joural of Fermentatin Bioengineering, 1989, 67(1):20-24.
[22] Tian S, Zhu JY, Yang XS. Evaluation of an adapted inhibitor-tolerant yeast strain for ethanol production from combined hydrolysate of softwood[J]. Applied Energy, 2011, 88(5):1792-1796.
[23] Tian S, Yang XS, Zhu JY. Robust cellulosic ethanol production from SPORL-pretreated lodgepole pine using an adapted strain Saccharomyces cerevisiae without detoxification[J]. Bioresource Technology, 2010, 101(22):8678-8685. |