Biotechnology Bulletin ›› 2014, Vol. 0 ›› Issue (5): 8-14.
• Review and editorial • Previous Articles Next Articles
Tian Xiaowei1 Peng Shouhua1 Wei Jiqiang1 Jiang Yong1 Wang Zhiqiang2 Wang Huaqi3
Received:
2013-10-15
Online:
2014-05-23
Published:
2014-05-24
Tian Xiaowei, Peng Shouhua, Wei Jiqiang, Jiang Yong, Wang Zhiqiang, Wang Huaqi. Advances of ABA Related Genes on Plant Drought Tolerance Gene Engineering Studies[J]. Biotechnology Bulletin, 2014, 0(5): 8-14.
[1] Morillon R, Chrispeels MJ. The role of ABA and the transpiration stream in the regulation of the osmotic water permeability of leaf cells[J]. Proc Natl Acad Sci USA, 2001, 98(24):14138-14143. [2] 李长宁, Srivastava MK, 农倩, 等. 水分胁迫下外源ABA 提高甘蔗抗旱性的作用机制[J]. 作物学报, 2010, 36(5):863-870. [3] 木合塔尔·扎热, 齐曼·尤努斯, 山中典和. 干旱胁迫下外源脱落酸和硅对沙枣幼苗叶片水势及保护酶活性的影响[J]. 植物研究, 2010, 30(4):468-472. [4] 胡秀丽, 杨海荣, 李潮海. ABA 对玉米响应干旱胁迫的调控机制[J]. 西北植物学报, 2009, 29(11):2345-2351. [5] 汪月霞, 索标, 赵腾飞, 等. 外源ABA 对干旱胁迫下不同品种灌浆期小麦psbA 基因表达的影响[J]. 作物学报, 2011, 37(8):1372-1377. [6] Marin E, Nussaume L, Quesada A, et al. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana[J]. EMBO J, 1996, 15(10):2331-2342. [7] Schwartz SH, Tan BC, Gage DA, et al. Specific oxidative cleavage of carotenoids by VP14 of maize[J]. Science, 1997, 276(5320):1872-874. [8] Seo M, Koiwai H, Akaba S, et al. Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana[J]. Plant J, 2000, 23(4):481-488. [9] Bittner F, Oreb M, Mendel RR. ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana[J]. J Biol Chem, 2001, 276(44):40381-40384. [10] Xiong LM, Ishitani M, Lee HJ, et al. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress-and osmotic stress-responsive gene expression[J]. Plant Cell, 2001, 13(9):2063-2083. [11] Park HY, Seok HY, Park BK, et al. Overexpression of Arabidopsis ZEP enhances tolerance to osmotic stress[J]. Biochem Biophys Res Commun, 2008, 375(1):80-85. [12] Iuchi S, Kobayashi M, Taji T, et al. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis[J]. Plant J, 2001, 27(4):325-333. [13] Qin XQ, Zeevaart JAD. Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance[J]. Plant Physiol, 2002, 128(2):544-551. [14] 徐春英. 应用气孔特异性启动子—KST1改良植物抗旱性的初步探讨[D].北京:中国农业大学, 2004:48-50. [15] Aswath CR, Kim SH, Mo SY, et al. Transgenic plants of creeping bentgrass harboring the stress inducible gene, 9-cis-epoxycarotenoid dioxygenase, are highly tolerant to drought and NaCl stress[J]. Plant Growth Regul, 2005, 47(2-3):129-139. [16] Wan XR, Li L. Regulation of ABA level and water-stress tolerance of Arabidopsis by ectopic expression of a peanut 9-cis-epoxycarotenoid dioxygenase gene[J].Biochem Biophys Res Commun, 2006, 347(4):1030-1038. [17] 贾娟娟, 孟秀萍, 刘蕊, 等.拟南芥NCED3基因在水稻种的过量表达可以提高水稻的干旱胁迫耐受性[J].复旦学报:自然科学版, 2008, 47(3):288-294. [18] Zhang YM, Yang JF, Lu SY, et al. Overexpressing SgNCED1 in tobacco increases ABA level, antioxidant enzyme activities, and stress tolerance[J]. J Plant Growth Regul, 2008, 27(2):151-158. [19] Zhang YM, Tan JL, Guo ZF, et al. Increased abscisic acid levels in transgenic tobacco over-expressing 9 cis-epoxycarotenoid dioxygenase influence H2O2 and NO production and antioxidant defences[J]. Plant Cell Environ, 2009, 32(5):509-519. [20] Hwang SG, Chen HC, Huang WY, et al. Ectopic expression of rice OsNCED3 in Arabidopsis increases ABA level and alters leaf morphology[J]. Plant Sci, 2010, 178(1):12-22. [21] Xiao BZ, Chen X, Xiang CB, et al. Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions[J]. Mol Plant, 2009, 2(1):73-83. [22] Yue Y, Zhang M, Zhang J, et al. Arabidopsis LOS5/ABA3 overexpression in transgenic tobacco(Nicotiana tabacum cv. Xanthi-nc)results in enhanced drought tolerance[J]. Plant Sci, 2011, 181(4):405-411. [23] Yue YS, Zhang MC, Zhang JC, et al. Overexpression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton[J]. J Exp Bot, 2012, 63(10):3741-3748. [24] Li YJ, Zhang JC, Zhang J, et al. Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions[J]. Plant Biotechnology J, 2013, 11(6):747-758. [25] Lu Y, Li YJ, Zhang JC, et al. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize(Zea mays L.)[J]. Plos One, 2013, 8(1):e52126. [26] Agarwal PK, Jha B. Transcription factors in plants and ABA dependent and independent abiotic stress signalling[J]. Biologia Plantarum, 2010, 54(2):201-212. [27] Phang TH, Shao GH, Lam HM. Salt tolerance in soybean[J]. Joumal of Integrative Plant Biology, 2008, 50(10):1196-1212. [28] Katharine EH, Noriyuki N, Kenichi H, et al. Early abscisic acid signal transduction mechanisms:newly discovered components and newly emerging questions[J]. Genes Dev, 2010, 24(16):1695-1708. [29] Raghavendra AS, Gonugunta VK, Christmann A, et al. ABA perception and signalling[J]. Trends Plant Sci, 2011(15):395-401. [30] Saavedra X, Modrego A, Rodriguez D, et al. The nuclear interactor PYL8/RCAR3 of Fagus sylvatica FsPP2C1 is a positive regulator of abscisic acid signaling in seeds and stress[J]. Plant Physiol, 2010, 152(1):133-150. [31] Zhang FY, Lu X, Lv ZY, et al. Overexpression of the Artemisia orthologue of ABA receptor, AaPYL9, enhances ABA sensitivity and improves artemisinin content in Artemisia annua L.[J]. Plos One, 2013, 8(2):e56697. [32] Liu, LX, Hu, XL, Song, JA, et al. Over-expression of a Zea mays L. protein phosphatase 2C gene(ZmPP2C)in Arabidopsis thaliana decreases tolerance to salt and drought[J]. J Plant Physiol, 2009, 166(5):531-542. [33] Umezawa T, Yoshida R, Maruyama K, et al. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2004, 101(49):17306-17311. [34] Xu ZS, Liu L, Ni ZY, et al. W55a Encodes a novel protein kinase that is involved in multiple stress responses[J]. J Integr Plant Biol, 2009, 51(1):58-66. [35] Mao XG, Zhang HY, Tian SJ, et al. TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat(Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis[J]. J Exp Bot, 2010, 61(3):683-696. [36] Zhang HY, Mao XG, Wang CS, et al. Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis[J]. Plos One, 2010, 5(12):e16041. [37] Ying S, Zhang DF, Li HY, et al. Cloning and characterization of a maize SnRK2 protein kinase gene confers enhanced salt tolerance in transgenic Arabidopsis[J]. Plant Cell Rep, 2011, 30(9):1683-1699. [38] Zou HW, Li CH, Liu HF, et al. Zmspk1, a member of plant snrk2 subfamily in maize enhances tolerance to salt in transgenic Arabidopsis[J]. Aust J Crop Sci, 2011, 5(10):1179-1184. [39] Du XM, Zhao XL, Li XJ, et al. Overexpression of TaSRK2C1, a wheat SNF1-related protein kinase 2 gene, increases tolerance to dehydration, salt, and low temperature in transgenic tobacco[J]. Plant Mol Biol Rep, 2013, 31(4):810-821. [40] Tian SJ, Mao XG, Zhang HY, et al. Cloning and characterization of TaSnRK2.3, a novel SnRK2 gene in common wheat[J]. J Exp Bot, 2013, 64(7):2063-2080. [41] Busk PK, Pages M. Regulation of abscisic acid-induced transcrip-tion[J]. Plant Mol Biol, 1998, 37(3):425-435. [42] Rock C. Pathways to abscisic acid-regulated gene expression[J]. New Phytol, 2000, 148(3):357-396. [43] Choi HI, Hong JH, Ha JO, et al. ABFs, a family of ABA-responsive element binding factors[J]. Biol Chem, 2000, 275(3):1723-1730. [44] Uno Y, Furihata T, Abe H, et al. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions[J]. Proc Natl Acad Sci USA, 2000, 97(21):11632-11637. [45] Kim S, Kang SY, Cho DI, et al. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance[J]. Plant J, 2004, 40(1):75-87. [46] Kang JY, Choi HI, Im MY, et al. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling[J]. Plant Cell, 2002, 14(2):343-357. [47] Vanjildorj E, Bae TW, Riu KZ, et al. Overexpression of Arabidopsis ABF3 gene enhances tolerance to drought and cold in transgenic lettuce(Lactuca sativa)[J]. Plant Cell Tiss Org Cult, 2005, 83(1):41-50. [48] Oh SJ, Song SI, Kim YS, et al. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth[J]. Plant Physiol, 2005, 138(1):341-351. [49] Vanjildorj E, Bae TW, Riu KZ, et al. Transgenic Agrostis mongolica Roshev. with enhanced tolerance to drought and heat stresses obtained from Agrobacterium-mediated transformation[J]. Plant Cell Tiss Org, 2006, 87(2):109-120. [50] Abdeen A, Schnell J, Miki B. Transcriptome analysis reveals absence of unintended effects in drought-tolerant transgenic plants overexpressing the transcription factor ABF3[J]. BMC Genomics, 2010, 11:69. [51] Choi YS, Kim YM, Hwang OJ, et al. Overexpression of Arabidopsis ABF3 gene confers enhanced tolerance to drought and heat stress in creeping bentgrass[J]. Plant Biotechnol Rep, 2013, 7(2):165-173. [52] Huang XS, Liu JH, Chen XJ. Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes[J]. BMC Plant Biol, 2010, 10:230. [53] Orellana S, Yanez M, Espinoza A, et al. The transcription factor SIAREB1 confers drought, salt stress tolerance and regulate biotic and abiotic stress-related genes in tomato[J]. Plant, Cell and Environ, 2010, 33(12):2191-2208. [54] Kobayashi F, Maeta E, Terashima A, et al. Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings[J]. Physiol Plant, 2008, 134(1):74-86. [55] Gao SQ, Chen M, Xu ZS, et al. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants[J]. Plant Mol Biol, 2011, 75(6):537-553. |
[1] | HUANG Xiao-long, SUN Gui-lian, MA Dan-dan, YAN Hui-qing. Construction of Yeast One-hybrid Library and Screening of Factors Regulating LAZY1 Expression in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 126-135. |
[2] | HAN Hao-zhang, ZHANG Li-hua, LI Su-hua, ZHAO Rong, WANG Fang, WANG Xiao-li. Construction of cDNA Library of Cinnamomun bodinieri Induced by Saline-alkali Stress and Screening of CbP5CS Upstream Regulators [J]. Biotechnology Bulletin, 2023, 39(9): 236-245. |
[3] | LYU Qiu-yu, SUN Pei-yuan, RAN Bin, WANG Jia-rui, CHEN Qing-fu, LI Hong-you. Cloning, Subcellular Localization and Expression Analysis of the Transcription Factor Gene FtbHLH3 in Fagopyrum tataricum [J]. Biotechnology Bulletin, 2023, 39(8): 194-203. |
[4] | XU Jing, ZHU Hong-lin, LIN Yan-hui, TANG Li-qiong, TANG Qing-jie, WANG Xiao-ning. Cloning of IbHQT1 Promoter and Identification of Upstream Regulatory Factors in Sweet Potato [J]. Biotechnology Bulletin, 2023, 39(8): 213-219. |
[5] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[6] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[7] | GUO Yi-ting, ZHAO Wen-ju, REN Yan-jing, ZHAO Meng-liang. Identification and Analysis of NAC Transcription Factor Family Genes in Helianthus tuberosus L. [J]. Biotechnology Bulletin, 2023, 39(6): 217-232. |
[8] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[9] | WANG Bing, ZHAO Hui-na, YU Jing, YU Shi-zhou, LEI Bo. Research Progress in the Regulation of Plant Branch Development [J]. Biotechnology Bulletin, 2023, 39(5): 14-22. |
[10] | LIU Kui, LI Xing-fen, YANG Pei-xin, ZHONG Zhao-chen, CAO Yi-bo, ZHANG Ling-yun. Functional Study and Validation of Transcriptional Coactivator PwMBF1c in Picea wilsonii [J]. Biotechnology Bulletin, 2023, 39(5): 205-216. |
[11] | ZHANG Xin-bo, CUI Hao-liang, SHI Pei-hua, GAO Jin-chun, ZHAO Shun-ran, TAO Chen-yu. Research Progress in Low-input Chromatin Immunoprecipitation Assay [J]. Biotechnology Bulletin, 2023, 39(4): 227-235. |
[12] | WANG Hai-long, LI Yu-qian, WANG Bo, XING Guo-fang, ZHANG Jie-wei. Isolation and Expression Analysis of SiMAPK3 in Setaria italica L. [J]. Biotechnology Bulletin, 2023, 39(3): 123-132. |
[13] | GE Yan-rui, ZHAO Ran, XU Jing, LI Ruo-fan, HU Yun-tao, LI Rui-li. Advances in the Development and Regulation of Vascular Cambium [J]. Biotechnology Bulletin, 2023, 39(3): 13-25. |
[14] | LIU Cheng-xia, SUN Zong-yan, LUO Yun-bo, ZHU Hong-liang, QU Gui-qin. Multifaceted Roles of bHLH Phosphorylation in Regulation of Plant Physiological Functions [J]. Biotechnology Bulletin, 2023, 39(3): 26-34. |
[15] | ZHAO Meng-liang, GUO Yi-ting, REN Yan-jing. Identification and Analysis of WRKY Transcription Factor Family Genes in Helianthus tuberosus [J]. Biotechnology Bulletin, 2023, 39(2): 116-125. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||