[1] Pysh LD, Wysocka-Diller J, Camilleri C, et al. The GRAS gene family in Arabidopsis:sequence characterization and basic expression analysis of SCARECROW-LIKE genes[J]. Plant J, 1999, 18(1):111-119.
[2] Bolle C. The role of GRAS proteins in plant signal transduction development[J]. Planta, 2004, 218(5):683-692.
[3] Laurenzio LD, Wysocka-Diller J, Malamy JE, et al. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root[J]. Cell, 1996, 86(3):423-433.
[4] Silverstone AL, Ciampaglio CN, Sun T. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway[J]. Plant Cell, 1998, 10(2):155-169.
[5] Sibylle H, Giles EDO. GRAS-domain transcription factors that regulate plant development[J]. Plant Signal Behav, 2009, 4(8):698-700.
[6] Tian CG, Wan P, Sun SH, et al. Genome-wide analysis of the GRAS gene family in rice and Arabidopsis[J]. Plant Mol Biol, 2004, 54(4):519-532.
[7] Stuurman J, Jaggi F, Kuhlemeier C. Shoot meristem maintenance is controlled by a GRAS-gene mediated signal from differentiating cells[J]. Gene Dev, 2002, 16(17):2213-2218.
[8] Sole A, Sanchez C, Vielba JM, et al. Charaterization and expression of a Pinus radiata putative ortholog to the Arabidopsis SHORT-ROOT gene[J]. Tree Physiol, 2008, 28(11):1629-1639.
[9] Levesque MP, Vernoux T, Busch W, et al. Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis[J]. PloS Biology, 2006, 4(5):739-752.
[10] Sassa N, Matsushita Y, Nakamura T, Nyunoya H. The molecular characterization and in situ expression pattern of pea SCARECROW gene[J]. Plant Cell Physiol, 2001, 42(4):385-394.
[11] Helariutta Y, Fukaki H, Wysocka-Diller J, et al. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling[J]. Cell, 2000, 101(5):555-567.
[12] Stuurman J, Jaggi F, Kuhlemeier C. Shoot meristem maintenance is controlled by a GRAS-gene mediated signal from differentiating cells[J]. Gene Dev, 2002, 16(17):2213-2218.
[13] Bolle C, Koncz C, Chua NH. PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction[J]. Gene Dev, 2000, 14(10):1269-1278.
[14] Torres-Galea P, Huang LF, Chua NH, Bolle C. The GRAS protein SCL13 is a positive regulator of phytochrome-dependent red light signaling, but can also modulate phytochrome A responses[J]. Mol Genet Genomics, 2006, 276(1):13-30.
[15] Achard P, Cheng H, Grauwe LD, et al. Integration of plant responses to environmentally activated phytohormonal signals[J]. Science, 2006, 311(5757):91-94.
[16] Aleman L, Kitamura J, Abdel-mageed H, et al. Functional analysis of cotton orthologs of GA signal transduction factors GID1 and SLR1[J]. Plant Mol Biol, 2008, 68(2):1-16.
[17] Zhang ZL, Ogawa M, Fleet CM, et al. SCARECROW-LIKE 3 promo-tes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis[J]. Proc Natl Acad Sci, 2011, 108(5):2160-2165.
[18] Liao WB, Ruan MB, Cui BM, et al. Isolation and characterization of a GAI/RGA-like gene from Gossypium hirsutum[J]. Plant Growth Regul, 2009, 58(1):35-45.
[19] 石瑞, 曹诣斌, 陈文荣, 郭卫东. 佛手GRAS基因的克隆及表达分析[J]. 浙江师范大学学报, 2011, 34:446-451.
[20] Park HJ, Jung WY, Lee SS, et al. Use of heat stress responsive gene expression levels for early selection of heat tolerant cabbage(Brassica oleracea L.)[J]. Int J Mol Sci, 2013, 14:11871-11894.
[21] Ma HS, Liang D, Shuai P, et al. The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana[J]. J Exp Bot, 2010, 61:4011-4019.
[22] 曾幼玲, 蔡忠贞, 马纪, 等. 盐分和水分胁迫对两种盐生植物盐爪爪和盐穗木种子萌发的影响[J]. 生态学杂志, 2006, 25:1014-1018.
[23] 蔡伦, 张富春, 马纪, 等. 新疆3种藜科盐生植物NHX基因的克隆与序列分析比较[J]. 植物生理学通讯, 2005, 41(3):383-387.
[24] 郗金标, 张福锁, 毛达如, 等. 新疆盐生植物群落物种多样性及其分布规律的初步研究[J]. 林业科学, 2006, 42(10):6-12.
[25] 周莲洁, 杨中敏, 张富春, 王艳. 新疆盐穗木GRAS转录因子基因克隆及表达分析[J]. 西北植物学报, 2013, 33(6):1091-1097.
[26] 刘强, 张贵友, 陈受宜. 植物转录因子的结构与调控作用[J]. 科学通报, 2000, 45(14):1465-1474.
[27] Sun TP. Gibberellin-GID1-DELLA:a pivotal regulatory module for plant growth and development[J]. Plant Physiol, 2010, 154:567-570.
[28] Sun XL, Jones WT, Harvey D, et al. N-terminal domains of DELLA proteins are intrinsically unstructured in the absence of interaction with GID1/gibberellic acid receptors[J]. J Biol Chem, 2010, 285:11557-11571.
[29] Willige BC, Ghosh S, Nill C, et al. The DELLA domain of GAI NSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis[J]. Plant Cell, 2007, 19:1209-1220.
[30] Hirano K, Ueguchi-Tanaka M, Matsuoka M. GID1-mediated gibberellin signaling in plants[J]. Trends Plant Sci, 2008, 13:192-199.
[31] Cui HC, Levesque MP, Vernoux T, et al. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants[J]. Science, 2007, 316:421-425.
[32] Torres-Galea P, Hirtreiter B, Bolle C. Two GRAS proteins, SCARECROW-LIKE21 and PHYTOCHROME A SIGNAL TRANSDUCTION1, function cooperatively in phytochrome A signal transduction[J]. Plant Physiol, 2013, 161:291-304.
[33] Hirsch S, Kim J, Mu?oz A, et al. GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula[J]. Plant Cell, 2009, 21:545-557.
[34] Son GH, Wan J, Kim HJ, et al. Ethylene-responsive element-binding factor 5, ERF5, is involved in chitin-induced innate immunity response[J]. Mol Plant Microbe In, 2012, 25(1):48-60. |