[1] Warburg O. The metabolism of tumors in the body[J]. J Gen Physiol, 1927, 8(6):519-530. [2] Koppenol WH, BoundsPL, DangCV. Otto Warburg’s contributions to current concepts of cancer metabolism[J]. Nat Rev Cancer, 2011, 11(5):325-337. [3] Gupta V, Bamezai RN. Human pyruvate kinase M2:a multifuncti-onal protein[J]. Protein Sci, 2010, 19(11):2031-2044. [4] Altenberg B, Greulich KO. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes[J]. Genomics, 2004, 84:1014-1020. [5] Baek SH. When signaling kinases meet histones and histone modifiers in the nucleus[J]. Mol Cell, 2011, 42:274-284. [6] Warburg O. On the origin of cancer cells[J]. Science, 1956, 123:309-314. [7] Mu?oz-Pinedo C, El Mjiyad N, Ricci JE. Cancer metabolism:current perspectives and future dire-ctions[J]. Cell Death Dis, 2012, 3:e248. [8] Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism[J]. Nat Rev Cancer, 2011, 11:85-95. [9] Jacinto E, Loewith R, Schmidt A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive[J]. Nat Cell Biol, 2004, 6(11):1122-1128. [10] Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics[J]. Oncogene, 2010, 29:625-634. [11] David CJ, Chen M, Assanah M, et al. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer[J]. Nature, 2010, 463:364-368. [12] Clower CV, Chatterjee D, Wang Z, et al. The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism[J]. Proc Natl Acad Sci USA, 2010, 107:1894-1899. [13]Chen M, David CJ, Manley JL. Concentration-dependent control of pyruvate kinase M mutually exclusive splicing by hnRNP proteins[J]. Nat Struct Mol Biol, 2012, 19:346-335. [14]Luo W, Hu H, Chang R, et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1[J]. Cell, 2011, 145(5):732-744. [15]Chaneton B, Gottlieb E. Rocking cell metabolism:revised functions of the key glycolytic regulator PKM2 in cancer[J]. Trends Biochem Sci, 2012, 37(8):309-316. [16]Hitosugi T, Kang S, Vander Heiden MG, et al. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth[J]. Sci Signal, 2009, 2(97):73-75. [17]Anastasiou D, Poulogiannis G, Asara JM, et al. , Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses[J]. Science, 2011, 334(6060):1278-1283. [18]Bluemlein K, Grüning NM, Feichtinger RG, et al. No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesi[J]. Oncotarget, 2011, 2:393-400. [19]Chaneton B, Hillmann P, Zheng L, et al. Serine is a natural ligand and allosteric activator of pyruvate kinase M2[J]. Nature, 2012, 491(7424):458-462. [20]Keller KE, Tan IS, LeeYS. SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions[J]. Science, 2012, 338(6110):1069-1072. [21]Bensinger SJ, Christofk HR. New aspects of the Warburg effect in cancer cell biology[J]. Semin Cell Dev Biol, 2012, 23(4):352-361. [22]Sun Y, Connors KE, Yang DQ. AICAR induces phosphorylation of AMPK in an ATM-dependent, LKB1-independent manner[J]. Mol Cell Biochem, 2007, 306(12):239-245. [23]Faubert B, Boily G, Izreig S, et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo[J]. Cell Metabolism, 2013, 17(1):113-124. [24]Yoo YG, Hayashi M, Christensen J, Huang LE. An essential role of the HIF-1alpha-c-Myc axis in malignant progression[J]. Ann N Y Acad Sci, 2009, 1177:198-204. [25]Lu Z. Nonmetabolic functions of pyruvate kinase isoform M2 in controlling cell cycle progression and tumorigenesis[J]. Chin J Cancer, 2012, 31(1):5-7. [26]Steták A, Veress R, Ovádi J, et al. Nuclear translocation of the tumor marker pyruvate kinase M2 induces programmed cell death[J]. Cancer Res, 2007, 67(4):1602-1608. [27] Dombrauckas JD, Santarsiero BD, Mesecar AD. Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis[J]. Biochemistry, 2005, 44:9417-9429. [28]Lv L, Li D, Zhao D, et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth[J]. Mol Cell, 2011, 42(6):719-730. [29]Anastasiou D, Poulogiannis G, Asara JM, et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses[J]. Science, 2011, 334(6060):1278-1283. [30]Weibo L, Gregg LS. Pyruvate kinase M2 regulates glucose metabolism by functioning as a coactivator for hypoxia-inducible factor 1 in cancer cells[J]. Oncotarget, 2011, 2(7):551-556. [31]Lee J, Kim HK, Han YM, Kim J, et al. Pyruvate kinase isozyme type M2 . PKM2)interacts and cooperates with Oct-4 in regulating transcription[J]. Int J Biochem Cell Biol, 2008, 40(5):1043-1054. [32]Gao X, Wang H, Yang JJ, et al. Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase[J]. Mol Cell, 2012, 45(5):598-609. [33]Levine AJ, Puzio-Kuter AM. The control of the metabolic switch in cancer by oncogenes and tumor suppressor genes[J]. Science, 2010, 330:1340-1344. [34]Carroll RC, Ash JF, Vogt PK, Singer SJ. Reversion of transformed glycolysis to normal by inhibition of protein synthesis in rat kidney cells infected with temperature-sensitive mutant of Rous sarcoma virus[J]. Proc Natl Acad Sci USA, 1978, 75:5015-5019. [35]Lunt SY, Vander Heiden MG. Aerobic glycolysis:meeting the metabolic requireements of cell proliferation[J]. Annu Rev Cell Dev Biol, 2011, 27:441-464. [36]Hirschhaeuser F, Sattler UG, Mueller-Klieser W. Lactate:a metabolic key player in cancer[J]. Cancer Res, 2011, 71:6921-6925. [37]Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics[J]. Oncogene, 2010, 29:625-634. [38]Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation[J]. Mol Cell Biol, 1992, 12:5447-5454. [39]Epstein AC, Gleadle JM, McNeill LA, et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation[J]. Cell, 2001, 107:43-54. [40] Yang W, Zheng Y, Xia Y, et al. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect[J]. Nat Cell Biol, 2012, 14(12):1295-1304. [41]Yang W, Xia Y, Ji H, et al. Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation[J]. Nature, 2011, 480(7375):118-122. [42]Yang W, Xia Y, Hawke D, et al. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis[J]. Cell, 2012, 150(4):685-696. [43]Semenza GL. HIF-1:upstream and downstream of cancer metabolism[J]. Curr Opin Genet Dev, 2010, 20(1):51-56. [44]Semenza GL. HIF-1 mediates the Warburg effect in clear cell renal carcinoma[J]. J. Bioenerg Biomembr, 2007, 39:231-234. [45]Tamada M, Suematsu M, Saya H. Pyruvate kinase M2:multiple faces for conferring benefits on cancer cells[J]. Clin Cancer Res, 2012, 18(20):5554-5561. [46]Spoden GA, Mazurek S, Morandell D, et al . Isotype-specific inhibitors of the glycolytic key regulator pyruvate kinase subtype M2 moderately decelerate tumor cell proliferation[J]. Int J Cancer, 2008, 123:312-321. [47]Chen J, Xie J, Jiang Z, et al. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2[J]. Oncogene, 2011, 30:4297-4306. [48]Christofk HR, Vander Heiden MG, Harris MH, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth[J]. Nature, 2008, 452:230-233. |