[1]Wang S, Liu F, Hou Z, et al. Enhancement of natamycin production on Streptomyces gilvosporeus by chromosomal integration of the Vitreoscilla hemoglobingene(vgb)[J]. World J Microbiol Biotechnol, 2014, 30(4):1369-1376. [2]te Welscher YM, ten Napel HH, Balagué MM, et al. Natamycin blocks fungal growth by binding specifically to ergosterol without permeabilizing the membrane[J]. J Biol Chem, 2008, 283(10):6393-6401. [3] Prajna NV, Mascarenhas J, Krishnan T, et al. Comparison of natam-ycin and voriconazole for the treatment of fungal keratitis[J]. Arch Ophthalmol, 2010, 6:672-678. [4]王春艳, 刘树立. 纳他霉素的研究概况及其在食品工业中的应用[J]. 中国食品添加剂, 2007, 2:169-173. [5] Martín JF, Liras P. Reprogramming microbial metabolic pathways[M]. Netherlands:Springer Netherlands, 2012:115-138. [6]Aparicio JF, Fouces R, Mendes MV, et al. A complex multienzyme system encoded by five polyketide synthase genes is involved in the biosynthesis of the 26-membered polyene macrolide pimaricin in Streptomyces natalensis[J]. Chem Biol, 2000, 7(11):895-905. [7]Aparicio JF, Colina AJ, Ceballos E, et al. The biosynthetic gene cluster for the 26-membered ring polyene macrolide pimaricin a new polyketide synthase organization encoded by two subclusters separated by functionalzation genes[J]. J Biol Chem, 1999, 274(15):10133-10139. [8]Sharma KK, Boddy CN. The thioesterase domain from the pimaricin and erythromycin biosynthetic pathways can catalyze hydrolysis of simple thioester substrates[J]. Bioorg Med Chem Lett, 2007, 17(11):3034-3037. [9]Kells PM, Ouellet H, Santos-Aberturas J, et al. Structure of cytochrome P450 pimd suggests epoxidation of the polyene macrolide pimaricin occurs via a hydroperoxoferric intermediate[J]. Chem Biol, 2010, 17(8):841-851. [10]Santos-Aberturas J, Engel J, Dickerhoff J, et al. Exploration of the substrate promiscuity of biosynthetic tailoring enzymes as a new source of structural diversity for polyene macrolide antifungals[J]. ChemCatChem, 2015, 7(3): 490-500. [11]Mendes MV, Recio E, Fouces R, et al. Engineered biosynthesis of novel polyenes:A pimaricin derivative produced by targeted gene disruption in Streptomyces natalensis[J]. Chem Biol, 2001, 8(7):635-644. [12]Kim BS, Cropp TA, Beck BJ, et al. Biochemical evidence for an editing role of thioesterase II in the biosynthesis of the polyketide pikromycin[J]. J Biol Chem, 2002, 277(50):48028-48034. [13]Davidson AL, Dassa E, Orelle C, et al. Structure, function, and evolution of bacterial ATP-binding cassette systems[J]. Microbiol Mol Biol R, 2008, 72(2):317-364. [14]Liu G, Chater KF, Chandra G, et al. Molecular regulation of antibiotic biosynthesis in streptomyces[J]. Microbiol Mol Biol R, 2013, 77(1):112-143. [15]Yoon V, Nodwell JR. Activating secondary metabolism with stress and chemicals[J]. J Ind Microbiol Biot, 2014, 41(2):415-424. [16]Jang BY, Hwang YI, Choi SU. Effects of pimM and pimR on the increase of natamycin production in Streptomyces natalensis[J]. J Korean Soc Appl Bi, 2011, 54(1):141-144. [17]Antón N, Martin JF, Mendes MV, et al. Identification of PimR as a positive regulator of pimaricin biosynthesis in Streptomyces natalensis[J]. J Bacteriol, 2004, 186(9):2567-2575. [18]Antón N, Santos-Aberturas J, Mendes MV, et al. PimM, a PAS domain positive regulator of pimaricin biosynthesis in Streptomyces natalensis[J]. Microbiology, 2007, 153(9):3174-3183. [19]Santos-Aberturas J, Payero TD, Vicente CV, et al. Functional conservation of PAS-LuxR transcriptional regulators in polyene macrolide biosynthesis[J]. Metab Eng, 2011, 13(6):756-767. [20]Vicente CM, Santos-Aberturas J, Payero TD, et al. PAS-LuxR transcriptional control of filipin biosynthesis in S. avermitilis[J]. Appl Microbiol Biot, 2014, 98(22):9311-9324. [21]Santos-Aberturas J, Vicente CV, Payero TD, et al. Hierarchical control on polyene macrolide biosynthesis:PimR modulates pimaricin production via the PAS-LuxR transcriptional activator PimM[J]. PLoS ONE, 2012, 7(6):e38536. [22]Santos-Aberturas J, Vicente CM, Guerra SM, et al. Molecular control of polyene macrolide biosynthesis direct binding of the regulator pimm to eight promoters of pimaricin genes and identification of binding boxes[J]. J Biol Chem, 2011, 286(11):9150-9161. [23]Aparicio JF, Martn JF. Microbial cholesterol oxidase:Bioconversion enzymes or signal proteins?[J]. Mol Biosyst, 2008, 4(8):804-809. [24]Mendes MV, Recio E, Antón N, et al. Cholesterol oxidases act as signaling proteins for the biosynthesis of the polyene macrolide pimaricin[J]. Chem Biol, 2007, 14(3):279-290. [25]Tezuka T, Ohnishi Y. Microbial production[M]. Japan:Springer Japan, 2014:179-190. [26]Martín JF, Liras P. Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces[J]. Curr Opin Microbiol, 2010, 3(3):263-273. [27]Recio E, Colina A, Rumbero A, et al. PI factor, a novel type quorum sensing inducer elicits pimaricin production in Streptomyces natalensis[J]. J Biol Chem, 2004, 279(40):41586-41593. [28] Nodwell JR. Are you talking to me? A possible role for γ-butyrola-ctones in interspecies signaling?[J]. Mol Microbiol, 2014, 94(3):483-485. [29]Vicente CM, Santos-Aberturas J, Guerra SM, et al. PimT, an amino acid exporter controls polyene production via secretion of the quorum sensing pimaricin-inducer PI-factor in Streptomyces natalensis[J]. Microb Cell Fact, 2009, 8(1):426-433. [30]Recio E, Aparicio JF, Rumbero A, et al. Glycerol, ethylene glycol and propanediol elicit pimaricin biosynthesis in the PI-factor defective strain Streptomyces natalensis npi287 and increase polyene production in several wild type actinomycetes[J]. Microbiology, 2006, 152:3147-3156. [31]Li M, Chen S, Li J, et al. Propanol addition improves natamycin biosynthesis of Streptomyces natalensis[J]. Appl Biochem Biotechnol, 2014, 172(7):3424-3432. [32]Sanche S, Demain AL. Metabolic regulation of fermentation processes[J]. Enzyme Microb Tech, 2002, 31(7):895-906. [33]Nieselt K, Battke F, Herbig A, et al. The dynamic architecture of the metabolic switch in Streptomyces coelicolor[J]. BMC Genomics, 2010, 11(1):150-155. [34]Rodríguez H, Rico S, Díaz M, et al. Two-component systems in Streptomyces:key regulators of antibiotic complex pathways[J]. Microb Cell Fact, 2013, 12(4):491-494. [35]Mendes MV, Tunca S, Antón N, et al. The two-component phoR-phoP system of Streptomyces natalensis:inactivation or deletion of phoP reduces the negative phosphate regulation of pimaricin biosynthesis[J]. Meta Eng, 2007, 9(2):217-227. [36]Martín JF. Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR-PhoP system:an unfinished story[J]. J Bacteriol, 2004, 186(16):5197-5201. [37]Rodríguez-García A, Barreiro C, Santos-Beneit F, et al. Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a DphoP mutant[J]. Proteomics, 2007, 7(14):2410-2429. [38] Tiffert Y, Supra P, Wurm R, et al. The Streptomyces coelicolor GlnR regulon:identification of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in actinomycetes[J]. Mol Microbiol, 2008, 67(4):861-880. [39]Rigali S, Titgemeyer F, Barends S, et al. Feast or famine:the global regulator DasR links nutrient stress to antibiotic production by Streptomyces[J]. EMBO Rep, 2008, 9(7):670-675. [40]Borodina I, Siebring J, Zhang J, et al. Antibiotic overproduction in Streptomyces coelicolor A3 2 mediated by phosphofructokinase deletion[J]. J Biol Chem, 2008, 283(37):25186-25199. [41]Martín JF, Sola-Landa A, Santos-Beneit F, et al. Cross-talk of global nutritional regulators in the control of primary and secondary metabolism in Streptomyces[J]. Microb Biotechnol, 2011, 4(2):165-174. [42]Rodríguez-García A, Sola-Landa A, Apel K, et al. Phosphate control over nitrogen metabolism in Streptomyces coelicolor:direct and indirect negative control of glnR, glnA, glnII and amtB expression by the response regulator PhoP[J]. Nucleic Acids Res, 2009, 37(10):3230-3242. [43]el-Enshasy HA, Farid MA, el-Sayed el SA. Influence of inoculum type and cultivation conditions on natamycin production by Streptomyces natalensis[J]. J Basic Microb, 2000, 40(5-6):333-342. [44]Beites T, Pires SDS, Santos CL, et al. Crosstalk between ROS homeostasis and secondary metabolism in S. natalensis ATCC 27448:modulation of pimaricin production by intracellular ROS[J]. PLoS One, 2011, 6(11):e27472. [45]Beites T, Rodríguez-García A, Moradas-Ferreira P, et al. Genome-wide analysis of the regulation of pimaricinproduction in Streptomyces natalensis by reactive oxygen species[J]. Appl Microbiol Biot, 2014, 98(5):2231-2241. |