[1] Thomas DN, Dieckmann GS. Antarctic sea ice-a habitat for extremophiles[J]. Science, 2002, 295(5555):641-644. [2] Singh SM, Pereira N, Ravindra R. Adaptive mechanisms for stress tolerance in Antarctic plants[J]. Current Science, 2010, 99:334-340. [3] Bunt JS, Wood EJF. Microbiology of Antarctic sea-ice:microalgae and Antarctic sea-ice[J]. Nature, 1963, 199:1254-1255. [4] Lyon BR, Mock T. Polar Microalgae:New approaches towards und-erstanding adaptations to an extreme and changing environment[J]. Biology, 2014, 3(1):56-80. [5] 何剑锋, 王桂忠, 李少菁, 等. 南极海冰区冰藻类群及兴衰过程[J]. 极地研究, 2003, 15(2):102-105. [6] Legendre L, Ackley SF, Dieckmann GS, et al. Ecology of sea ice biota[J]. Polar Biology, 1992, 12(3-4):429-444. [7] Tonon T, Sayanova O, et al. Fatty acid desaturases from the microalga Thalassiosira pseudonana[J]. Febs J, 2005, 272:3401-3412. [8] Teoh ML, Chu WL, et al. Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae[J]. J Appl Phycol, 2004, 16:421-430. [9] Hu H, Li H, Xu X. Alternative cold response modes in Chlorella(Chlorophyta, Trebouxiophyceae)from Antarctica[J]. Phycologia, 2008, 47(1):28-34. [10] Lu Y, Chi X, Yang Q, et al. Molecular cloning and stress-dependent expression of a gene encoding Δ12-fatty acid desaturase in the Antarctic microalga Chlorella vulgaris NJ-7[J]. Extremophiles, 2009, 13(6):875-884. [11] Boelen P, van Dijk R, Damsté JSS, et al. On the potential application of polar and temperate marine microalgae for EPA and DHA production[J]. AMB Express, 2013, 3(1):26. [12] Teoh ML, Phang SM, Chu WL. Response of Antarctic, temperate, and tropical microalgae to temperature stress[J]. Journal of Applied Phycology, 2013, 25(1):285-297. [13] Gray CG, Lasiter AD, Leblond JD. Mono- and digalactosyldiacylgl-ycerol composition of dinoflagellates. III. Four cold-adapted, peridinin-containing taxa and the presence of trigalactosyldiacylgl-ycerol as an additional glycolipid[J]. European Journal of Phycology, 2009, 44(3):439-445. [14] Wang YB, Liu FM, Zhang XF, et al. Composition and regulation of thylakoid membrane of Antarctic ice microalgae Chlamydomonas sp. ICE-L in response to low-temperature environment stress[J]. J Mar Biol Assoc U.K., 2016, Available Online, doi:10. 1017/S0025315416000588. [15] Mou SL, Zhang XW, Ye NH, et al. Cloning and expression analysis of two different LhcSR genes involved in stress adaptation in an Antarctic microalga, Chlamydomonas sp. ICE-L[J]. Extremophiles, 2012, 16(2):193-203. [16] Dolhi JM, Maxwell DP, Morgan-Kiss RM. Review:The Antarctic Chlamydomonas raudensis:An emerging model for cold adaptation of photosynthesis[J]. Extremophiles, 2013, 17(5):711-722. [17] Banerjee R, Chakraborti P, Bhowmick R, et al. Distinct molecular features facilitating ice-binding mechanisms in hyperactive antifre-eze proteins closely related to an Antarctic sea ice bacterium[J]. J Biomol Struct Dyn, 2014, 33(7):1-18. [18] Raymond JA. Algal ice-binding proteins change the structure of sea ice[J]. Proc Nati Acad Sci, 2011, 108(24):E198. [19] Gwak IG, Jung WS, Kim HJ, et al. Antifreeze protein in Antarctic marine diatom, Chaetoceros neogracile[J]. Mar Biotechnol, 2010, 12(6):630-639. [20] Raymond JA, Morgan-Kiss R. Separate origins of ice-binding proteins in Antarctic Chlamydomonas species[J]. PLoS One, 2013, 8:e59186. [21] Jung W, Campbell RL, Gwak Y, et al. New Cysteine-rich ice-binding protein secreted from Antarctic microalga, Chloromonas sp. [J]. PLoS One, 2016, 11(4):e0154056. [22] Rakleova G, Pouneva I, Dobrev N, et al. Differentially secreted proteins of Antarctic and mesophilic strains of Synechocystis salina and Chlorella vulgaris after UV-B and temperature stress treatment[J]. Biotechnology & Biotechnological Equipment, 2013, 27(2):3669-3680. [23] 王以斌, 缪锦来, 姜英辉, 等. 脯氨酸和可溶性糖在南极冰藻低温适应机制中的作用[J]. 生物技术通报, 2016, 32(2):198-202. [24] Lyon BR, Lee PA, Bennett JM, et al. Proteomic analysis of a sea-ice diatom:salinity acclimation provides new insight into the dimethylsulfoniopropionate production pathway[J]. Plant Physiology, 2011, 157(4):1926-1941. [25] Tang KW, Smith WO, Shields AR, et al. Survival and recovery of Phaeocystis antarctica(Prymnesiophyceae)from prolonged dark-ness and freezing[J]. Proc Biol Sci, 2009, 276(1654):81-90. [26] 魏静, 王小冬. 南极衣藻对黑暗和低温的适应与恢复[J]. 中国海洋大学学报, 2013, 43(6):81-86. [27] Petrou K, Doblin MA, Ralph PJ. Heterogeneity in the photoprotec-tive capacity of three Antarctic diatoms during short-term changes in salinity and temperature[J]. Marine Biology, 2011, 158(5):1029-1041. [28] Rajesh PR, Shailendra PS, et al. Ultraviolet-B-induced DNA dam-age and photorepair in the cyanobacterium Anabaena variabilis PCC 7937[J]. Environ Exp Bot, 2011, 74:280-288. [29] 朱根海, 大谷修司, 扈传昱, 等. 全球气候变化对南极淡水藻类的影响[J]. 中国环境科学, 2010, 30(3):400-404. [30] Zacher K, Roleda MY, Hanelt D, et al. UV effects on photosynthesis and DNA in propagules of three different Antarctic microalgae species(Adenocystis utricularis, Monostroma hariotii and Porphyra endiviifolium)[J]. Planta, 2007, 225(6):1505-1516. [31] Park SK, Jin ES, Lee MY. Expression and antioxidant enzymes in Chaetoceros neogracile, an Antarctic alga[J]. Cryo-Letters, 2008, 29(4):351-361. [32] Li CJ, Ma L, Mou SL, et al. Cyclobutane Pyrimidine Dimers photolyase from extremophilic microalga:remarkable UVB resistance and efficient DNA damage repair[J]. Mutat Res, 2015, 773:37-42. [33] 李冲杰. 南极冰藻Chlamydomohas sp. ICE-L光修复酶基因及其修复DNA损伤分子机制研究[D]. 青岛:国家海洋局第一海洋研究所, 2015. [34] Rautenberger R, Huovinen P, Gómez I. Effects of increased seawater temperature on UV tolerance of Antarctic marine macroalgae[J]. Marine Biology, 2015, 162(5):1087-1097. [35] Cruces E, Huovinen P, Gómez I. Interactive effects of UV radiation and enhanced temperature on photosynthesis, phlorotannin induction and antioxidant activities of two sub-Antarctic brown algae[J]. Marine Biology, 2013, 160(1):1-13. [36] Rautenberger R, Wiencke C, Bischof K. Acclimation to UV radiation and antioxidative defence in the endemic Antarctic brown macroalga Desmarestia anceps along a depth gradient[J]. Polar Biology, 2013, 36(12):1779-1789. [37] Huovinen P, Gómez I. Photosynthetic characteristics and UV stress tolerance of Antarctic seaweeds along the depth gradient[J]. Polar Biology, 2013, 36(9):1319-1332. [38] Gómez I, Huovinen P. Lack of physiological depth patterns in conspecifics of endemic Antarctic brown algae:a trade-off between UV stress tolerance and shade adaptation?[J]. PLoS One, 2015, 10(8):e0134440. [39] 史翠娟, 阚光锋, 缪锦来, 等. 南极冰藻逆境适应性机理的研究进展[J]. 海洋科学, 2010, 34(4):100-103. [40] Ryan KG, McMinn A, et al. The effects of ultraviolet-b radiation on Antarctic sea-ice algae[J]. J Phycol, 2012, 48(1):74-84. [41] Janknegt PJ, Van De Poll WH, Visser RJW, et al. Oxidative stress responses in the marine antarctic diatom Chaetoceros brevis(bacillariophyceae)during photoacclimation[J]. Journal of Phycology, 2008, 44(4):957-966. [42] Hwang Y, Jung G, Jin ES. Transcriptome analysis of acclimatory responses to thermal stress in Antarctic algae[J]. Biochem Biophys Res Commun, 2008, 367(3):635-641. [43] Kan GF, Miao JL, Shi CJ, et al. Proteomic alterations of Antarctic ice microalga Chlamydomonas sp. under low-temperature stress[J]. J Integr Plant Biol, 2006, 48(8):965-970. [44] Blanc G, Agarkova I, Grimwood J, et al. The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation[J]. Genome Biology, 2012, 13(5):R39. [45] Homepage of Fragilariopsis cylindrus Genome[DB]. Available online:Http://genome. jgi-psf. org/ Fracy1/Fracy1. home. html(accessed on 7 September 2013). [46] Raymond JA, Janech MG, Fritsen CH. Novel ice-binding proteins from a psychrophilic Antarctic alage(Chlamydomonadaceae, Chlorophyceae)[J]. Phycology, 2009, 45(1):130-136. [47] Yoon HS, Price DC, Stepanauskas R, et al. Single-cell genomics reveals organismal interactions in uncultivated marine protists[J]. Science, 2011, 332:714-717. [48] Chen Z, He CL, Hu HH. Temperature responses of growth, photosynthesis, fatty acid and nitrate reductase in Antarctic and temperate Stichococcus[J]. Extremophiles, 2012, 1:127-133. [49] Eddie B, Krembs C, Neuer S. Characterization and growth response to temperature and salinity of psychrophilic, halotolerant Chlamy-domonas sp. ARC isolated from Chukchi sea ice[J]. Marine Ecology Progress Series, 2008, 354:107-117. [50] Lukeš M, Procházková L, Shmidt V, et al. Temperature dependence of photosynthesis and thylakoid lipid composition in the red snow alga Chlamydomonas cf. nivalis(Chlorophyceae)[J]. FEMS Microbiology Ecology, 2014, 89(2):303-315. [51] Chong GL, Chu WL, Othman RY, et al. Differential gene expression of an Antarctic Chlorella in response to temperature stress[J]. Polar Biology, 2011, 34(5):637-645. [52] Liu SH, Zhang PY, et al. Molecular cloning and expression analysis of a cytosolic Hsp70 gene from Antarctic ice algae Chlamydomonas sp. ICE-L[J]. Extremophiles, 2010, 3:329-337. [53] Zhang PY, Liu SH, Cong BL, et al. A novel omega-3 fatty acid desaturase involved in acclimation processes of polar condition from antarctic ice algae Chlamydomonas sp. ICE-L[J]. Marine Biotechnology, 2011, 13(3):393-401. [54] An ML, Mou SL, Zhang XW, et al. Temperature regulates fatty acid desaturases at a transcriptional level and modulates the fatty acid profile in the Antarctic microalga Chlamydomonas sp. ICE-L[J]. Bioresource Technology, 2013, 134:151-157. [55] An ML, Mou SL, et al. Expression of fatty acid desatu-rase genes and fatty acid accumulation in Chlamydomonas sp. ICE-L under salt stress[J]. Bioresour Technol, 2013, 149:77-83. |