[1] Chen W, HuangT, Dai J, et al. Evaluations of tobacco cultivars resistance to Tobacco mosaic virus and Potato virus Y[J]. Plant Pathology Journal, 2014, 13(1):37-43. [2] Yan DH, Fenning T, Tang S, et al. Genome-wide transcriptional response of Populus euphratica to long-term drought stress[J]. Plant Sci, 2012, 195:24-35. [3] Zhao MY, Zhang ZB, Chen SY, et al. WRKY transcription factor superfamily:Structure, origin and functions[J]. African Journal of Biotechnology, 2012, 11(32):8051-8059. [4] Schmutz J, Cannon SB, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010, 463(7278):178-183. [5] Pandey SP, Roccaro M, Schön M, et al. Transcriptional reprogramm-ing regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis[J]. Plant J, 2010, 64(6):912-923. [6] Naoumkina M, He X, Dixon R. Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula[J]. BMC Plant Biol, 2008, 8:132. [7] Popescu SC, Popescu GV, Bachan S, et al. MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays[J]. Genes Dev, 2009, 23(1):80-92. [8] Ishihama N, Yamada R, Yoshioka M, et al. Phosphorylation of the Nicotiana benthamiana WRKY8 transcription factor by MAPK functions in the defense response[J]. Plant Cell, 2011, 23(3):1153-1170. [9] Skibbe M, Qu N, Galis I, et al. Induced plant defenses in the natural environment:Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory[J]. Plant Cell, 2008, 20(7):1984-2000. [10] Nishiuchi T, Shinshi H, Suzuki K. Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves - Possible involvement of NtWRKYs and autorepression[J]. J Biol Chem, 2004, 279(53):55355-55361. [11] Yamamoto S, Nakano T, Suzuki K, Shinshi H. Elicitorinduced activation of transcription via W box-related cis-acting elements from a basic chitinase gene by WRKY transcription factors in tobacco[J]. Biochim Biophys Acta, 2004, 1679(3):279-287. [12] Adachi H, Nakano T, Miyagawa N, et al. WRKY transcription factors phosphorylated by MAPK regulate a plant immune NADPH oxidase in Nicotiana benthamiana[J]. Plant Cell, 2015, 27(9):2645-2663. [13] 周汉琛, 席玉珍, 魏书. RNA病毒诱导的烟草WRKY转录因子基因的应急表达[J]. 安徽农业大学学报, 2014, 41(6):1020-1026. [14] Carbonell A, Fahlgren N, Mitchell S, et al. Highly specific gene silencing in a monocot species by artificial microRNAs derived from chimeric miRNA precursors[J]. Plant J, 2015, 82(6):1061-1075. [15] Niu QW, Lin SS, Reyes JL, et al. Expression of artificial micro-RNAs in transgenic Arabidopsis thaliana confers virus resistance[J]. Nat Biotechnol, 2008, 24(11):1420-1428. [16] Qu J, Ye J, Fang R. Artificial microRNA-mediated virus resistance in plants[J]. J Virol, 2007, 81(12):6690-6699. [17] Tang S, Wang Y, Li Z, et al. Identification of wounding and topping responsive small RNAs in tobacco(Nicotiana tabacum)[J]. BMC Plant Biol, 2012, 12:28. [18] Ossowski S, Schwab R, Weigel D. Gene silencing in plants using artificial microRNAs and other small RNAs[J]. Plant J, 2008, 53(4):674-690. [19] Gregor WS, Sven KD. Stable internal reference genes for normali-zation of real-time RT-PCR in tobacco(Nicotiana tabacum)during development and abiotic stress[J]. Mol Genet Genomics, 2010, 283(3):233-241. [20] Lang QL, Jin CZ, Lai LY, et al. Tobacco microRNAs prediction and their expression infected with Cucumber mosaic virus and Potato virus X[J]. Mol Biol Rep, 2011, 38(3):1523-1531. [21] Horsch RB, Fry JE, Hoffmann NL, et al. A simple and general method for transferring genes into plant[J]. Science, 1985, 227(4691):1229-1231. [22] Abbruscato P, Nepusz T, Mizzd L, et al. OsWRKY22, a monocot WRKY gene, plays a role in the resistance response to blast[J]. Mol Plant Pathol, 2012, 13(8):828-841. [23] Pan LJ, Jiang L. Identification and expression of the WRKY transcription factors of Carica papaya in response to abiotic and biotic stresses[J]. Mol Biol Rep, 2014, 41(3):1215-25. [24] Rushton PJ, Torres JT, Parniske M, et al. Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes[J]. EMBO J, 1996, 15(20):5690-700. [25] Chen C, Chen Z. Isolation and characterization of two pathogen- and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco[J]. Plant Mol Biol, 2000, 42(2):387-96. [26] Dong J, Chen C, Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response[J]. Plant Mol Biol, 2003, 51(1):21-37. [27] Turck F, Zhou A, Somssich IE. Stimulus-dependent, promoter-specific binding of transcription factor WRKY1 to Its native promoter and the defense-related gene PcPR1-1 in Parsley[J]. Plant Cell, 2004, 16(10):2573-2585. [28] Chi Y, Yang Y, Zhou Y, et al. Protein-protein interactions in the regulation of WRKY transcription factors[J]. Mol Plant, 2013, 6(2):287-300. [29] 胡曼, 宋丹丹, 杨金淼, 等. 烟草WRKY-R1基因的克隆及瞬时表达分析[J]. 山东农业科学, 2014, 46(9):12-16. [30] Tiwari M, Sharma D, Trivedi PK. Artificial microRNA mediated gene silencing in plants:progress and perspectives[J]. Plant Mol Biol, 2014, 86(1-2):1-18. [31] Sablok G, Pérez-Quintero AL, Hassan M, et al. Artificial microRNAs(amiRNAs)engineering - On how microRNA-based silencing methods have affected current plant silencing research[J]. Biochem Biophys Res Commun, 2011, 406(3):315-319. [32] Ai T, Zhang L, Gao Z, et al. Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants[J]. Plant Biol(Stuttg), 2011, 13(2):304-316. [33] Dai X, Zhao PX. psRNATarget:a plant small RNA target analysis server[J]. Nucleic Acids Res, 2011, 39(Web Server issue):W155-9. [34] Li J, Chung HS, Niu Y, et al. Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants[J]. Plant Cell, 2013, 25(5):1507-1522. [35] Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs[J]. Annu Rev Biochem, 2010, 79(1):351-379. [36] Pasquinelli AE. MicroRNAs and their targets:Recognition, regulation and an emerging reciprocal relationship[J]. Nat Rev Genet, 2012, 13(4):271-28. |