[1] Tan CM, Chen RJ, Zhang JH, et al.OsPOP5, A Prolyl oligopeptidase family gene from rice confers abiotic stress tolerance in Escherichia coli[J]. International Journal of Molecular Sciences, 2013, 14(10):20204-20219. [2] Verbruggen N, Hermans C.Proline accumulation in plants:a review[J]. Amino Acids, 2008, 35(4):753-759. [3] Chinnusamy V, Jagendorf A, Zhu JK.Understanding and improving salt tolerance in plants[J]. Crop Science, 2005, 45(2):437-448. [4] Matysik J, Bhalu BA, Mohanty P, et al.Molecular mechanism of quenching of reactive oxygen species by proline under stress in plants[J]. Current Science, 2002, 82(5):525-532. [5] Verslues PE, Agarwal M, Katiyar-Agarwal S, et al.Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status[J]. Plant Journal, 2006, 45(4):523-539. [6] Maggio A, Miyazaki S, Veronese P, et al.Does proline accumulation play an active role in stress-induced growth reduction?[J]. Plant Journal, 2002, 31(6):699-712. [7] Adams E.Metabolism of proline and of hydroxyproline[J]. Annual Review of Biochemistry, 1970, 5(49):1005-1061. [8] Delauney AJ, Verma DPS.Proline biosynthesis and osmoregulation in plants[J]. Plant Journal, 1993, 4(4):215-223. [9] Trovato M, Mattioli R, Costantino P.Multiple roles of proline in plant stress tolerance and development[J]. Rendiconti Lincei, 2008, 19(4):325-346. [10] Liang X, Zhang L, Natarajan SK, et al.Proline mechanisms of stress survival[J]. Antioxidants & Redox Signaling, 2013, 19(9):998-1011. [11] Yoshiba Y, Kiyosue T, Katagiri T, et al.Correlation between the induction of a gene for Δ1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress[J]. Plant Journal for Cell & Molecular Biology, 1995, 7(5):751-760. [12] Strizhov N, Ábrahám E, Ökrész L, et al.Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis[J]. Plant Journal for Cell & Molecular Biology, 1997, 12(3):557-569. [13] Armengaud P, Thiery L, Buhot N, et al.Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features[J]. Physiologia Plantarum, 2004, 120(3):442-450. [14] Ginzberg I, Stein H, Kapulnik Y, et al.Isolation and characterization of two different cDNAs of Δ1-pyrroline-5-carboxylate synthase in alfalfa, transcriptionally induced upon salt stress[J]. Plant Molecular Biology, 1998, 38(5):755-764. [15] Fujita T, Maggio A, Garciarios M, et al.Comparative analysis of the regulation of expression and structures of two evolutionarily divergent genes forΔ1-pyrroline-5-carboxylate synthetase from tomato[J]. Plant Physiology, 1998, 118(2):661-674. [16] Chen JB, Zhang XY, Jing RL, et al.Cloning and genetic diversity analysis of a new P5CS gene from common bean(Phaseolus vulgaris L.)[J]. Theor Appl Genet, 2010, 120(7):1393-1404. [17] Su M, Li XF, Ma XY, et al.Cloning two P5CS, genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment[J]. Plant Science, 2011, 181(6):652-659. [18] Zhu X, Li X, Zou Y, et al.Cloning, characterization and expression analysis of Δ1-pyrroline-5-carboxylate synthetase(P5CS)gene in harvested papaya(Carica papaya)fruit under temperature stress[J]. Food Research International, 2012, 49(1):272-279. [19] Xue X, Liu A, Hua X.Proline accumulation and transcriptional regulation of proline biosynthesis and degradation in Brassica napus[J]. Bmb Reports, 2009, 42(1):28-34. [20] Kishor P, Hong Z, Miao GH, et al.Overexpression of Δ-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants[J]. Plant Physiology, 1995, 108(4):1387-1394. [21] Hmidasayari A, Gargouribouzid R, Bidani A, et al.Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants[J]. Plant Science, 2005, 169(4):746-752. [22] Anoop N, Gupta AK.Transgenic indica, Rice cv, IR-50 Over-expressing Vigna aconitifolia, Δ1 -Pyrroline -5- carboxylate synthetase cDNA shows tolerance to high salt[J]. Journal of Plant Biochemistry & Biotechnology, 2003, 12(2):109-116. [23] Vendruscolo ECG, Schuster I, Pileggi M, et al.Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat[J]. Journal of Plant Physiology, 2007, 164(10):1367-1376. [24] Su M, Li XF, Ma XY, et al.Cloning two P5CS, genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment[J]. Plant Science, 2011, 181(6):652-659. [25] Hong Z, Zhang Z.Removal of feedback inhibition of Δ1-Pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress[J]. Plant Physiology, 2000, 122(4):1129-1136. [26] Silva-Ortega CO, Ochoa-Alfaro AE, Reyes-Agüero JA, et al.Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear[J]. Plant Physiology & Biochemistry Ppb, 2008, 46(1):82-92. |