Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (10): 165-172.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0012
Previous Articles Next Articles
CUI Gu-zhen1,3(), CHEN Xiang-hao2, HONG Wei4, ZHANG Zheng-rong1,3, QI Ting-na1,3, CHEN Zheng-hong1,3(
)
Received:
2020-01-03
Online:
2020-10-26
Published:
2020-11-02
Contact:
CHEN Zheng-hong
E-mail:cuiguzhen@gmc.edu.cn;chenzhenghong@gmc.edu.cn
CUI Gu-zhen, CHEN Xiang-hao, HONG Wei, ZHANG Zheng-rong, QI Ting-na, CHEN Zheng-hong. Functional Analysis and Validation of Mg2+ Binding Sites of Intron-encoded Protein[J]. Biotechnology Bulletin, 2020, 36(10): 165-172.
Primers | Sequences(5'-3') | Notes |
---|---|---|
lacZ-UF | CGGTCAATCCGCCGTTTGTTC | To detect the lacZ gene |
lacZ-DR | GACCAGATGATCACACTCGG | |
IEP-F | ATCGAGGCTAGCGCTATATGCGTTGATG | To amplify the IEP fragment |
IEP-R | CGTTCCAGATCTCCTTACTCGTA | |
D308A-F | TACGTCCGGTATGCGGCTGACTTCATTATCTCT | To mutate the D308A |
D308A-R | AGCCGCATACCGGACGTATTTCAATACTTTATT | |
D309A-F | GTCCGGTATGCGGACGCTTTCATTATCTCTGTT | To mutate the D309A |
D309A-R | AGCGTCCGCATACCGGACGTATTTCAATACTTT | |
D308A/D309A-F | TACGTCCGGTATGCGGCTGCTTTCATTATCTCTGTT | To mutate the D308A/D309A |
D308A/D309A-R | AGCAGCCGCATACCGGACGTATTTCAATACTTTATT |
Primers | Sequences(5'-3') | Notes |
---|---|---|
lacZ-UF | CGGTCAATCCGCCGTTTGTTC | To detect the lacZ gene |
lacZ-DR | GACCAGATGATCACACTCGG | |
IEP-F | ATCGAGGCTAGCGCTATATGCGTTGATG | To amplify the IEP fragment |
IEP-R | CGTTCCAGATCTCCTTACTCGTA | |
D308A-F | TACGTCCGGTATGCGGCTGACTTCATTATCTCT | To mutate the D308A |
D308A-R | AGCCGCATACCGGACGTATTTCAATACTTTATT | |
D309A-F | GTCCGGTATGCGGACGCTTTCATTATCTCTGTT | To mutate the D309A |
D309A-R | AGCGTCCGCATACCGGACGTATTTCAATACTTT | |
D308A/D309A-F | TACGTCCGGTATGCGGCTGCTTTCATTATCTCTGTT | To mutate the D308A/D309A |
D308A/D309A-R | AGCAGCCGCATACCGGACGTATTTCAATACTTTATT |
Strains and plasmids | Features | Source or reference | |
---|---|---|---|
Strains | E. coli DH5α | Clone strain,FˉlacZΔM15Δ(lacZYA-argF)relA1 | TaKaRa |
E. coli BL21(DE3) | F-,ompT,hsdS(rBB-mB),gal,dcm(DE3) | TaKaRa | |
Plasmids | pMD19T | TA clone Vector,Ampr | TaKaRa |
pSY7 | Derived from pSY6,lacI,T7 promotor,Ampr | [ | |
pSY7-lacZ-635s | Derived from pSY7,targeting the sense strand 635 site of lacZ in BL21(DE3) | [ | |
pSY7-lacZ-1063a | Derived from pSY7,targeting the antisense strand 1063 site of lacZ in BL21(DE3) | [ |
Strains and plasmids | Features | Source or reference | |
---|---|---|---|
Strains | E. coli DH5α | Clone strain,FˉlacZΔM15Δ(lacZYA-argF)relA1 | TaKaRa |
E. coli BL21(DE3) | F-,ompT,hsdS(rBB-mB),gal,dcm(DE3) | TaKaRa | |
Plasmids | pMD19T | TA clone Vector,Ampr | TaKaRa |
pSY7 | Derived from pSY6,lacI,T7 promotor,Ampr | [ | |
pSY7-lacZ-635s | Derived from pSY7,targeting the sense strand 635 site of lacZ in BL21(DE3) | [ | |
pSY7-lacZ-1063a | Derived from pSY7,targeting the antisense strand 1063 site of lacZ in BL21(DE3) | [ |
[1] |
Belfort M, Lambowitz AM. Group II intron RNPs and reverse transcriptases:from retroelements to research tools[J]. Cold Spring Harb Perspect Biol, 2019,11(4):a032375.
URL pmid: 30936187 |
[2] |
Mohr G, Kang SY, Park SK, et al. A highly proliferative group IIC intron from Geobacillus stearothermophilus reveals new features of group II intron mobility and splicing[J]. J Mol Biol, 2018,430(17):2760-2783.
doi: 10.1016/j.jmb.2018.06.019 URL pmid: 29913158 |
[3] |
Toro N, Molina-Sanchez MD, Nisa-Martinez R, et al. Bacterial group II introns:identification and mobility assay[J]. Methods Mol Biol, 2016,1400:21-32.
doi: 10.1007/978-1-4939-3372-3_2 URL pmid: 26895044 |
[4] |
Toro N, Martinez-Abarca F, Molina-Sanchez MD, et al. Contribution of mobile group II introns to Sinorhizobium meliloti genome evolution[J]. Front Microbiol, 2018,9:627.
URL pmid: 29670598 |
[5] | Pyle AM. Group II intron self-splicing[J]. Annu Rev Biophys, 2016,45:183-205. |
[6] |
McNeil BA, Semper C, Zimmerly S. Group II introns:versatile ribozymes and retroelements[J]. Wiley Interdiscip Rev RNA, 2016,7(3):341-355.
URL pmid: 26876278 |
[7] |
Truong DM, Hewitt FC, Hanson JH, et al. Retrohoming of a mobile group II intron in human cells suggests how eukaryotes limit group II intron proliferation[J]. PLoS Genet, 2015,11(8):e1005422.
URL pmid: 26241656 |
[8] | Lambowitz AM, Belfort M. Mobile bacterial group II introns at the crux of eukaryotic evolution[J]. Microbiol Spectr, 2015, 3(1):MDNA3-0050- 2014. |
[9] |
Yao J, Truong DM, Lambowitz AM. Genetic and biochemical assays reveal a key role for replication restart proteins in group II intron retrohoming[J]. PLoS Genet, 2013,9(4):e1003469.
URL pmid: 23637634 |
[10] | Mohr S, Ghanem E, Smith W, et al. Thermostable group II intron reverse transcriptase fusion proteins and their use in cDNA synjournal and next-generation RNA sequencing[J]. RNA, 2013,19(7):958-970. |
[11] | Mohr G, Hong W, Zhang J, et al. A targetron system for gene targeting in thermophiles and its application in Clostridium thermocellum[J]. PLoS One, 2013,8(7):e69032. |
[12] | Stamos JL, Lentzsch AM, Lambowitz AM. Structure of a thermostable group II intron reverse transcriptase with template-primer and its functional and evolutionary implications[J]. Mol Cell, 2017, 68(5):926-939. e4. |
[13] |
Kuehne SA, Minton NP. ClosTron-mediated engineering of Clostridium[J]. Bioengineered, 2012,3(4):247-254.
URL pmid: 22750794 |
[14] | Hong W, Zhang J, Feng Y, et al. The contribution of cellulosomal scaffoldins to cellulose hydrolysis by Clostridium thermocellum analyzed by using thermotargetrons[J]. Biotechnol Biofuels, 2014,7:80. |
[15] |
Cui GZ, Zhang J, Hong W, et al. Improvement of ClosTron for successive gene disruption in Clostridium cellulolyticum using a pyrF-based screening system[J]. Appl Microbiol Biotechnol, 2014,98(1):313-323.
URL pmid: 24190496 |
[16] | Cui GZ, Hong W, Zhang J, et al. Targeted gene engineering in Clostridium cellulolyticum H10 without methylation[J]. J Microbiol Methods, 2012,89(3):201-208. |
[17] |
Jia K, Zhu Y, Zhang Y, et al. Group II intron-anchored gene deletion in Clostridium[J]. PLoS One, 2011,6(1):e16693.
doi: 10.1371/journal.pone.0016693 URL pmid: 21304965 |
[18] |
Heap JT, Kuehne SA, Ehsaan M, et al. The ClosTron:Mutagenesis in Clostridium refined and streamlined[J]. J Microbiol Methods, 2010,80(1):49-55.
URL pmid: 19891996 |
[19] | Enyeart PJ, Mohr G, Ellington AD, et al. Biotechnological applications of mobile group II introns and their reverse transcriptases:gene targeting, RNA-seq, and non-coding RNA analysis[J]. Mob DNA, 2014,5(1):2. |
[20] |
Lambowitz AM, Zimmerly S . Group II Introns:Mobile ribozymes that invade DNA[J]. Cold Spring Harbor Perspectives in Biology, 2011,3(8):a003616.
URL pmid: 20463000 |
[21] |
Lambowitz AM, Zimmerly S. Mobile group II introns[J]. Annu Rev Genet, 2004,38:1-35.
URL pmid: 15568970 |
[22] |
Mastroianni M, Watanabe K, White TB, et al. Group II intron-based gene targeting reactions in eukaryotes[J]. PLoS One, 2008,3(9):e3121.
URL pmid: 18769669 |
[23] |
Truong DM, Sidote DJ, Russell R, et al. Enhanced group II intron retrohoming in magnesium-deficient Escherichia coli via selection of mutations in the ribozyme core[J]. Proc Natl Acad Sci U S A, 2013,110(40):E3800-3809.
URL pmid: 24043808 |
[24] | 陈相好, 张峥嵘, 刘芳, 等. Ll. LtrB内含子编码蛋白反转录结构域关键催化位点分析及功能验证[J]. 微生物学报, 2019,59(12):2357-2366. |
Chen XH, Zhang ZR, Liu F, et al. Key catalytic sites in the reverse transcription domain of Ll.LtrB intron encoded protein[J]. Acta Microbiologica Sinica, 2019,59(12):2357-2366. | |
[25] | 陈相好, 刘芳, 王彩霞, 等. 高效严谨型大肠杆菌Targetron基因打靶系统的构建[J]. 生物技术通报, 2019,35(6):213-220. |
Chen XH, Liu F, Wang CX, et al. Construction of highly efficient and rigorous targetron system in Escherichia coli[J]. Biotechnology Bulletin, 2019,35(6):213-220. | |
[26] |
Zhuang F, Mastroianni M, White TB, et al. Linear group II intron RNAs can retrohome in eukaryotes and may use nonhomologous end-joining for cDNA ligation[J]. Proc Natl Acad Sci USA, 2009,106(43):18189-18194.
URL pmid: 19833873 |
[27] |
Guo H, Karberg M, Long M, et al. Group II introns designed to insert into therapeutically relevant DNA target sites in human cells[J]. Science, 2000,289(5478):452-457.
URL pmid: 10903206 |
[28] |
White TB, Lambowitz AM. The retrohoming of linear group II intron RNAs in Drosophila melanogaster occurs by both DNA ligase 4-dependent and -independent mechanisms[J]. PLoS Genet, 2012,8(2):e1002534.
URL pmid: 22359518 |
[29] |
Qu G, Kaushal PS, Wang J, et al. Structure of a group II intron in complex with its reverse transcriptase[J]. Nat Struct Mol Biol, 2016,23(6):549-557.
URL pmid: 27136327 |
[30] |
Komor AC, Badran AH, Liu DR. CRISPR-based technologies for the Manipulation of eukaryotic genomes[J]. Cell, 2017,168(1-2):20-36.
URL pmid: 27866654 |
[1] | CHEN Xiang-hao, LIU Fang, WANG Cai-xia, CHEN Zheng-hong, HONG Wei, CAI Meng-di, ZHANG Zheng-rong, QI Ting-na, LIAO Yong-hui, GU Jun-ying, CUI Gu-zhen. Construction of Highly Efficient and Rigorous Targetron System in Escherichia coli [J]. Biotechnology Bulletin, 2019, 35(6): 213-220. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 419
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||