Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (11): 63-69.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0380
Previous Articles Next Articles
LI Xiao-yan1,2(), LI Ze-qi1,2, WANG Yu-qian1,2, YU Jing1,2, LIN Zhen-ping1,2, LIN Xiang-min1()
Received:
2020-04-06
Online:
2020-11-26
Published:
2020-11-20
Contact:
LIN Xiang-min
E-mail:1403969901@qq.com;xiangmin@fafu.edu.cn
LI Xiao-yan, LI Ze-qi, WANG Yu-qian, YU Jing, LIN Zhen-ping, LIN Xiang-min. Construction of Aeromonas hydrophila acrA Deficient Strain and Determination of Its Physiological Function[J]. Biotechnology Bulletin, 2020, 36(11): 63-69.
引物名称 | 序列(5'-3') | 用途 |
---|---|---|
P1 | AATTCCCGGGAGAGCTCAACATCGCATGG | 左臂上游引物(Left arm upstream primer) |
P2 | TACTCCATCGGAGAACCTGAGCCTCTGTCTATC | 左臂下游引物(Left arm downstream primer) |
P3 | GCTCAGGTTCTCCGATGGAGTAGTCGCCTCAT | 右臂上游引物(Right arm upstream primer) |
P4 | CAAGCTTCTTCTAGAGTTGGCCACCACGTAG | 右臂下游引物(Right arm downstream primer) |
P5 | ATGCATAAACATATTCTCGCACG | 目的基因验证引物上游引物(Target gene verification primer upstream primer) |
P6 | CTACTTGTTGGCCGGGGCATTGG | 目的基因验证引物下游引物(Target gene verification primer downstream primer) |
P7 | GTGCAGATGACCCCGGGTGACG | 左臂外侧引物上游引物(Left arm outer primer upstream primer) |
P8 | CGTCACCCGGGTCATCTGCAC | 右臂外侧引物上游引物(Right arm lateral primer upstream primer) |
引物名称 | 序列(5'-3') | 用途 |
---|---|---|
P1 | AATTCCCGGGAGAGCTCAACATCGCATGG | 左臂上游引物(Left arm upstream primer) |
P2 | TACTCCATCGGAGAACCTGAGCCTCTGTCTATC | 左臂下游引物(Left arm downstream primer) |
P3 | GCTCAGGTTCTCCGATGGAGTAGTCGCCTCAT | 右臂上游引物(Right arm upstream primer) |
P4 | CAAGCTTCTTCTAGAGTTGGCCACCACGTAG | 右臂下游引物(Right arm downstream primer) |
P5 | ATGCATAAACATATTCTCGCACG | 目的基因验证引物上游引物(Target gene verification primer upstream primer) |
P6 | CTACTTGTTGGCCGGGGCATTGG | 目的基因验证引物下游引物(Target gene verification primer downstream primer) |
P7 | GTGCAGATGACCCCGGGTGACG | 左臂外侧引物上游引物(Left arm outer primer upstream primer) |
P8 | CGTCACCCGGGTCATCTGCAC | 右臂外侧引物上游引物(Right arm lateral primer upstream primer) |
[1] | Mikolosko J, Bobyk K, Zgurskaya HI, et al. Conformational flexibility in the multidrug efflux system protein AcrA[J]. Structure(Cambridge), 2006,14(3):577-587. |
[2] |
Hazel AJ, Abdali N, Leus IV, et al. Conformational dynamics of AcrA govern multidrug efflux pump assembly[J]. ACS Infectious Disease, 2019,5(11):1926-1935.
doi: 10.1021/acsinfecdis.9b00273 URL |
[3] | Piddock LJV. Multidrug-resistance efflux pumps-not just forresistance[J]. Nature Reviews Microbiology, 2006(4):629-636. |
[4] |
Kobayashi N, Nishino K, Yamaguchi A, et al. Novel macrolide-specific ABC-type efflux transporter in Escherichia coli[J]. Journal of Bacteriology, 2001,183(19):5639-5644.
doi: 10.1128/JB.183.19.5639-5644.2001 URL pmid: 11544226 |
[5] | Tikhonova EB, Zgurskaya HI. AcrA, AcrB and TolC of Escherichia coli form a stable intermembrane multidrug efflux complex[J]. Journal of Biological Chemistry, 2004,279(31):32116-32124. |
[6] | Chetri S, Bhowmik D, Dhar D, et al. Effect of concentration gradient carbapenem exposure on expression of blaNDM-1 and acrA in carbapenem resistant Escherichia coli[J]. Infection Genetics and Evolution, 2019(73):332-336. |
[7] |
Husain F, Humbard M, Misra R, et al. Interaction between the TolC and AcrA proteins of a multidrug efflux system of Escherichia coli[J]. Journal of Bacteriology, 2004,186(24):8533-8536.
URL pmid: 15576805 |
[8] |
Ma D, Cook DN, Alberti M, et al. Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli[J]. Molecular Microbiology, 2010,16(1):45-55.
URL pmid: 7651136 |
[9] |
Du D, Wang Z, James NR, et al. Structure of the AcrAB-TolC multidrug efflux pump[J]. Nature, 2014,509(7501):512-515.
URL pmid: 24747401 |
[10] | 沈秉正, 宋金春, 马福旺, 等. 细菌AcrAB-TolC型外排泵中AcrA蛋白的进化分析[J]. 氨基酸和生物资源, 2013,35(1):19-24. |
Shen BZ, Song JC, Ma FW. et al. The AcrA protein evolution analysis of bacteria l AcrAB ToIC efflux pump[J]. Amino Acids& Biootic Resources, 2013,35(1):19-24. | |
[11] |
Fang HM, Ge R, Sin YM, et al. Cloning, characterisation and expression of Aeromonas hydrophila major adhesin[J]. Fish Shellfish Immunol, 2004,16(5):645-658.
doi: 10.1016/j.fsi.2003.10.003 URL pmid: 15110338 |
[12] |
Mazzariol A, Tokue Y, Kanegawa TM, et al. High-level fluoroquinolone-resistant clinical isolates of Escherichia coli overproduce multidrug efflux protein AcrA[J]. Antimicrobial Agents & Chemotherapy, 2000,44(12):3441-3443.
URL pmid: 11083655 |
[13] |
Luhe AL, Lim CY, Gerken H, et al. Furfural and hydroxymethyl-furfural tolerance in Escherichia coli ΔacrR regulatory mutants[J]. Biotechnology and Applied Biochemistry, 2015,62(1):32-36.
doi: 10.1002/bab.1232 URL pmid: 24716991 |
[14] |
Blair JMA, La RRM, Woodward MJ, et al. Periplasmic adaptor protein AcrA has a distinct role in the antibiotic resistance and virulence of Salmonella enterica serovar Typhimurium[J]. Journal of Antimicrobial Chemotherapy, 2009,64(5):965-972.
doi: 10.1093/jac/dkp311 URL pmid: 19744979 |
[15] | Pourahmad Jaktaji R, Mohammadi P. Effect of total alkaloid extract of local Sophora alopecuroides on minimum inhibitory concentration and intracellular accumulation of ciprofloxacin, and acrA expression in highly resistant Escherichia coli clones[J]. Journal of Global Antimicrobial Resistance, 2018(12):55-60. |
[16] | 杨文, 陈红伟, 曾杨梅, 等. 内江市猪源大肠埃希菌抗菌药与消毒剂交叉耐药性研究[J]. 中国畜牧兽医, 2019,46(5):1499-1507. |
Yang W, Chen HW, Zeng YM, et al. Cross-resistance of antimicrobials and disinf ectants of Escherichia coli from NeiJiang City[J]. China Animal Husbandry& V eterinary Medicine, 2019,46(5):1499-1507. | |
[17] |
Bernardi AC, Gai CS, Lu J, et al. Experimental evolution and gene knockout studies reveal AcrA-mediated isobutanol tolerance in Ralstonia eutropha[J]. Journal of Bioscience and Bioengineering, 2016: 122(1):64-69.
doi: 10.1016/j.jbiosc.2015.12.015 URL pmid: 26811221 |
[18] |
Hernold M, Gagné S, Fournier M, et al. Role of the AheABC efflux pump in Aeromonas hydrophila Intrinsic multidrug resistance[J]. Antimicrob Agents Chemother, 2008,52(4):1559-1563.
doi: 10.1128/AAC.01052-07 URL pmid: 18268083 |
[19] |
Schlisselberg DB, Kler E, Kisluk G, et al. Biofilm forma-tion ability of Salmonella enterica serovar Typhimurium acrAB mutants[J]. International Journal of Antimicrobial Agents, 2015,46(4):456-459.
doi: 10.1016/j.ijantimicag.2015.06.011 URL pmid: 26260191 |
[20] |
Piao Z, Sze CC, Barysheva O, et al. Temperature-regulated formation of mycelial mat-like biofilms by Legionella pneumophila[J]. Appl Environ Microbiol, 2006,72(2):1613-1622.
doi: 10.1128/AEM.72.2.1613-1622.2006 URL pmid: 16461717 |
[21] | 陈小燕, 潘珏. 细菌耐多药外排泵的研究进展[J]. 微生物与感染, 2016,11(3):183-187. |
Chen XY, Pan Y. Research progress on bacterial multidrug efflux pumps and biofilm f ormation[J]. Journal of Microbes and Infections, 2016,11(3):183-187. |
[1] | CHENG Ya-nan, ZHANG Wen-cong, ZHOU Yuan, SUN Xue, LI Yu, LI Qing-gang. Synthetic Pathway Construction of Producing 2'-fucosyllactose by Lactococcus lactis and Optimization of Fermentation Medium [J]. Biotechnology Bulletin, 2023, 39(9): 84-96. |
[2] | YANG Yu-mei, ZHANG Kun-xiao. Establishing a Stable Cell Line with Site-specific Integration of ERK Kinase Phase-separated Fluorescent Probe Using CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(8): 159-164. |
[3] | GUO Shao-hua, MAO Hui-li, LIU Zheng-quan, FU Mei-yuan, ZHAO Ping-yuan, MA Wen-bo, LI Xu-dong, GUAN Jian-yi. Whole Genome Sequencing and Comparative Genome Analysis of a Fish-derived Pathogenic Aeromonas Hydrophila Strain XDMG [J]. Biotechnology Bulletin, 2023, 39(8): 291-306. |
[4] | LI Jing-rui, WANG Yu-bo, XIE Zi-wei, LI Chang, WU Xiao-lei, GONG Bin-bin, GAO Hong-bo. Identification and Expression Analysis of PIN Gene Family in Melon Under High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(5): 192-204. |
[5] | YAO Jin-dong, TANG Hua-mei, YANG Wen-xiao, ZHANG Li-shan, LIN Xiang-min. Comparative Proteomics Analysis of Aeromonas hydrophila Under Enrofloxacin Stress [J]. Biotechnology Bulletin, 2023, 39(4): 288-296. |
[6] | REN Si-yu, JIANG Cong-yi, YU Tao, KANG Rui, JIANG Xiao-bing. Role of agr System in the Antimicrobial Resistance and Biofilm Formation of Listeria monocytogenes [J]. Biotechnology Bulletin, 2023, 39(2): 254-262. |
[7] | WU Bai-zeng, HE Qi, YAO Fang-jie, ZHAO Meng-ran. Identification of Lactate Dehydrogenase in Pleurotus ostreatus and Heat Stress Expression Analysis of Mycelium [J]. Biotechnology Bulletin, 2023, 39(11): 350-359. |
[8] | YANG Min, LONG Yu-qing, ZENG Juan, ZENG Mei, ZHOU Xin-ru, WANG Ling, FU Xue-sen, ZHOU Ri-bao, LIU Xiang-dan. Cloning and Function Analysis of Gene UGTPg17 and UGTPg36 in Lonicera macranthoides [J]. Biotechnology Bulletin, 2023, 39(10): 256-267. |
[9] | DUAN Min-jie, LI Yi-fei, YANG Xiao-miao, WANG Chun-ping, HUANG Qi-zhong, HUANG Ren-zhong, ZHANG Shi-cai. Identification of Zinc Finger Protein DnaJ-Like Gene Family in Capsicum annuum and Its Expression Analysis Responses to High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(1): 187-198. |
[10] | SHI Cheng-long, WANG Xi-wu, LI An-qi, QIAN Sen-he, WANG Zhou, ZHAO Shi-guang, LIU Yan, XUE Zheng-lian. Effect of ε-Polylysine on the Cell Structure and Biofilm Formation of Cronobacter sakazakii [J]. Biotechnology Bulletin, 2022, 38(9): 147-157. |
[11] | ZHAO Hai-qing, LI Yun, LIANG Yan-nei, LIU Zhe, REN Ya-lin, LI Jin-juan. Advances in Research on the Effects of Joint Medication on the Drug Resistance of Aeromonas hydrophila [J]. Biotechnology Bulletin, 2022, 38(6): 53-65. |
[12] | ZHANG Yu, HAYSA· Ayelhan, RABIGUL· Sawut, SHI Chun-ming, ZHANG Ren-ming. Analysis of High Temperature Tolerance in Early Development of Esox lucius [J]. Biotechnology Bulletin, 2021, 37(5): 76-83. |
[13] | BI Yuan-kun, LI Li, ZHU Chuan-ying, WANG Yan-qin. Effects of Habitat,Temperature and Exogenous Hormones on the Organ Development of Karelinia caspia [J]. Biotechnology Bulletin, 2021, 37(4): 28-34. |
[14] | CHEN Jie-hao, MIAO Yu-jia, LIANG Chao, TAO Yu, OUYANG Ping, WANG Kai-yu, GENG Yi, SHI Cun-bin, LI Ning-qiu. Study on the Antibacterial Mechanism of Alpinetin Against Fish-derived Drug-resistant Aeromonas hydrophila in vitro [J]. Biotechnology Bulletin, 2021, 37(2): 103-110. |
[15] | ZHANG Yang, CHENG Peng, LI Xiao-fen, CHEN Hong-wei. Research Progress on Anti-biofilm Peptides [J]. Biotechnology Bulletin, 2021, 37(2): 216-223. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||