Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (12): 229-238.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0436
Previous Articles Next Articles
CHENG Wen-yu1(), BAI Yun1, JIA Huai-jie2, QIANG Tao-yan1, ZHAO Hong-yuan1, ZHANG Bo-yi1, GUO Xiao-hui1
Received:
2020-04-15
Online:
2020-12-26
Published:
2020-12-22
CHENG Wen-yu, BAI Yun, JIA Huai-jie, QIANG Tao-yan, ZHAO Hong-yuan, ZHANG Bo-yi, GUO Xiao-hui. Research Progress on Proteins of PEDV Antagonizing Host Innate Immune Responses[J]. Biotechnology Bulletin, 2020, 36(12): 229-238.
[1] | Sun D, Wang X, Wei S, et al. Epidemiology and vaccine of porcine epidemic diarrhea virus in China:a mini-review[J]. Journal of Veterinary Medical Science, 2016,78(3):355-363. |
[2] |
Wang D, Fang L, Xiao S. Porcine epidemic diarrhea in China[J]. Virus Research, 2016,226:7-13.
URL pmid: 27261169 |
[3] |
Sun J, Li Q, Shao C, et al. Isolation and characterization of Chinese porcine epidemic diarrhea virus with novel mutations and deletions in the S gene[J]. Veterinary Microbiology, 2018,221:81-89.
doi: 10.1016/j.vetmic.2018.05.021 URL pmid: 29981713 |
[4] |
Vlasova AN, Butler JE. Porcine anti-viral immunity[J]. Frontiers in Immunology, 2020,11:399.
URL pmid: 32210972 |
[5] |
Du J, Luo J, Yu J, et al. Manipulation of intestinal antiviral innate immunity and immune evasion strategies of porcine epidemic diarrhea virus[J]. Biomed Research International, 2019. DOI: 10.1155/2019/1862531.
URL pmid: 33313311 |
[6] |
Zhang Q, Yoo D. Immune evasion of porcine enteric coronaviruses and viral modulation of antiviral innate signaling[J]. Virus Research, 2016,226:128-141.
URL pmid: 27212682 |
[7] |
Wang Q, Vlasova AN, Kenney SP, et al. Emerging and re-emerging coronaviruses in pigs[J]. Curr Opin Virol, 2019,34:39-49.
URL pmid: 30654269 |
[8] |
Koonpaew S, Teeravechyan S, Frantz PN, et al. PEDV and PDCoV pathogenesis:the interplay between host innate immune responses and porcine enteric coronaviruses[J]. Frontiers in Veterinary Science, 2019,6:34.
URL pmid: 30854373 |
[9] |
Narayanan K, Ramirez SI, Lokugamage KG, et al. Coronavirus nonstructural protein 1:Common and distinct functions in the regulation of host and viral gene expression[J]. Virus Research, 2015,202:89-100.
URL pmid: 25432065 |
[10] | 郭存财, 刘炎, 黄耀伟. 猪流行性腹泻病毒与宿主抗病毒天然免疫抑制[J]. 中国生物化学与分子生物学报, 2016,32(9):967-975. |
Guo CC, Liu Y, Huang YW. Inhibitory mechanism of host antiviral innate immunity by porcine epidemic diarrhea virus[J]. Chinese Journal of Biochemistry and Molecular Biology, 2016,3(9):967-975. | |
[11] |
Zhang Q, Shi K, Yoo D. Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1[J]. Virology, 2016,489:252-268.
URL pmid: 26773386 |
[12] |
Zhang Q, Ke H, Blikslager A, et al. Type III interferon restriction by porcine epidemic diarrhea virus and the role of viral protein nsp1 in IRF1 signaling[J]. Journal of Virology, 2018,92(4):e01677-17.
URL pmid: 29187542 |
[13] | Shen Z, Wang G, Yang Y, et al. A conserved region of nonstructural protein 1 from alphacoronaviruses inhibits host gene expression and is critical for viral virulence[J]. Journal of Biological Chemistry, 2019,294(37):13606-13618. |
[14] | Zhang Q, Ma J, Yoo D. Inhibition of NF-κB activity by the porcine epidemic diarrhea virus nonstructural protein 1 for innate immune evasion[J]. Virology, 2017,510:111-126. |
[15] |
Lei J, Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses:structures and functions of a large multi-domain protein[J]. Antiviral Research, 2018,149:58-74.
doi: 10.1016/j.antiviral.2017.11.001 URL pmid: 29128390 |
[16] | Xing Y, Chen J, Tu J, et al. The papain-like protease of porcine epidemic diarrhea virus negatively regulates type I interferon pathway by acting as a viral deubiquitinase[J]. Journal of General Virology, 2013,94(Pt7):1554. |
[17] |
Wang Y, Sun A, Sun Y, et al. Porcine transmissible gastroenteritis virus inhibits NF-κB activity via nonstructural protein 3 to evade host immune system[J]. Virology Journal, 2019,16(1):1-13.
URL pmid: 30606229 |
[18] | Ye G, Deng F, Shen Z, et al. Structural basis for the dimerization and substrate recognition specificity of porcine epidemic diarrhea virus 3C-like protease[J]. Virology, 2016,494:225-235. |
[19] |
Wang D, Fang L, Shi Y, et al. Porcine epidemic diarrhea virus 3C-like protease regulates its interferon antagonism by cleaving NEMO[J]. Journal of Virology, 2015,90(4):2090-2101.
URL pmid: 26656704 |
[20] |
Zhu X, Fang L, Wang D, et al. Porcine deltacoronavirus nsp5 inhibits interferon-β production through the cleavage of NEMO[J]. Virology, 2017,502:33-38.
URL pmid: 27984784 |
[21] |
Zhu X, Wang D, Zhou J, et al. Porcine deltacoronavirus nsp5 antagonizes type I interferon signaling by cleaving STAT2[J]. Journal of Virology, 2017,91(10):e00003-17.
URL pmid: 28250121 |
[22] | Guo L, Luo X, Li R, et al. Porcine epidemic diarrhea virus infection inhibits interferon signaling by targeted degradation of STAT1[J]. Journal of Virology, 2016,90(18):8281-8292. |
[23] |
Yang L, Xu J, Guo L, et al. Porcine epidemic diarrhea virus-induced epidermal growth factor receptor activation impairs the antiviral activity of type I interferon[J]. Journal of Virology, 2018,92(8):e02095-17.
URL pmid: 29386292 |
[24] | 李红杰, 王晓雪, 高冬生, 等. 猪流行性腹泻病毒Nsp7的亚细胞定位和对Ⅰ型干扰素应答的影响[J]. 畜牧兽医学报, 2017,48(3):501-507. |
Li HJ, Wang XX, Gao DS, et al. Subcellular localization and effect on typeⅠ interferon response of porcine epidemic diarrhea virus nsp7[J]. Acta Veterinaria et Zootechnica Sinica, 2017,48(3):501-507. | |
[25] | 袁双玲. 猪流行性腹泻病毒nsp7抑制Ⅰ型IFN信号转导机制研究[D]. 武汉:华中农业大学, 2017. |
Yuan SL. Studies on the molecular mechanism of porcine epidemic diarrhea virus non-structural protein nsp7 inhibiting IFN-I signaling[D]. Wuhan:Huazhong Agricultural University, 2017. | |
[26] |
Deng X, Baker SC. An “old” protein with a new story:Coronavirus endoribonuclease is important for evading host antiviral defenses[J]. Virology, 2018,517:157-163.
doi: 10.1016/j.virol.2017.12.024 URL pmid: 29307596 |
[27] | Deng X, van Geelen A, Buckley AC, et al. Coronavirus endoribonuclease activity in porcine epidemic diarrhea virus suppresses type I and type III interferon responses[J]. Journal of Virology, 2019,93(8):e02000-18. |
[28] |
Liu X, Fang P, Fang L, et al. Porcine deltacoronavirus nsp15 antagonizes interferon-β production independently of its endoribonuclease activity[J]. Molecular Immunology, 2019,114:100-107.
URL pmid: 31351410 |
[29] |
Menachery VD, Debbink K, Baric RS. Coronavirus non-structural protein 16:evasion, attenuation, and possible treatments[J]. Virus Research, 2014,194:191-199.
URL pmid: 25278144 |
[30] |
Hou Y, Ke H, Kim J, et al. Engineering a live attenuated porcine epidemic diarrhea virus vaccine candidate via inactivation of the viral 2’-o-methyltransferase and the endocytosis signal of the spike protein[J]. J Virol, 2019,93(15):e00406-19.
URL pmid: 31118255 |
[31] |
Bouvet M, Lugari A, Posthuma CC, et al. Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes[J]. J Biol Chem, 2014,289(37):25783-25796.
doi: 10.1074/jbc.M114.577353 URL pmid: 25074927 |
[32] |
Menachery VD, Gralinski LE, Mitchell HD, et al. Middle east respiratory syndrome coronavirus nonstructural protein 16 is necessary for interferon resistance and viral pathogenesis[J]. MSphere, 2017,2(6):e00346-17.
URL pmid: 29152578 |
[33] |
Li F. Structure, function, and evolution of coronavirus spike proteins[J]. Annu Rev Virol, 2016,3(1):237-261.
URL pmid: 27578435 |
[34] | 沈媚, 陈冰清, 于瑞嵩, 等. 冠状病毒S蛋白及其受体的结构和功能[J]. 微生物学通报, 2017,44(10):2452-2462. |
Shen M, Chen BQ, Yu RS, et al. Structure and function of coronaviral S proteins and their receptors[J]. Microbiology China, 2017,44(10):2452-2462. | |
[35] |
Chen Y, Zhang Z, Li J, et al. Porcine epidemic diarrhea virus S1 protein is the critical inducer of apoptosis[J]. Virology Journal, 2018,15(1):170.
URL pmid: 30404647 |
[36] |
Sun M, Ma J, Yu Z, et al. Identification of two mutation sites in spike and envelope proteins mediating optimal cellular infection of porcine epidemic diarrhea virus from different pathways[J]. Veterinary Research, 2017,48(1):44.
URL pmid: 28854955 |
[37] | Xu X, Zhang H, Zhang Q, et al. Porcine epidemic diarrhea virus E protein causes endoplasmic reticulum stress and up-regulates interleukin-8 expression[J]. Virol J, 2013,10(1):26. |
[38] |
Xu XG, Zhang HL, Zhang Q, et al. Porcine epidemic diarrhea virus M protein blocks cell cycle progression at S-phase and its subcellular localization in the porcine intestinal epithelial cells[J]. Acta Virologica, 2015,59(3):265-275.
URL pmid: 26435150 |
[39] | 曹丽艳. 猪流行性腹泻病毒感染猪小肠上皮细胞抑制IFN-β产生及激活NF-κB机理研究[D]. 哈尔滨:东北农业大学, 2015. |
Cao LY. The mechanism by which porcine epidemic diarrhea virus inhibits interferon-β production and activates NF-κB in porcine intestinal epithelial cells[D]. Harbin: Northeast Agricultural University, 2015. | |
[40] |
Ding Z, Fang L, Jing H, et al. Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IRF3 and TBK1[J]. Journal of Virology, 2014,88(16):8936-8945.
URL pmid: 24872591 |
[41] |
Shan Y, Liu Z, Li G, et al. Nucleocapsid protein from porcine epidemic diarrhea virus isolates can antagonize interferon-λ production by blocking the nuclear factor-κB nuclear translocation[J]. Journal of Zhejiang University-Science B, 2018,19(7):570-580.
URL pmid: 29971995 |
[42] | Cao L, Ge X, Gao Y, et al. Porcine epidemic diarrhea virus infection induces NF-κB activation through the TLR2, TLR3 and TLR9 pathways in porcine intestinal epithelial cells[J]. Journal of General Virology, 2015,96(7):1757-1767. |
[43] |
Xu X, Zhang H, Zhang Q, et al. Porcine epidemic diarrhea virus N protein prolongs S-phase cell cycle, induces endoplasmic reticulum stress, and up-regulates interleukin-8 expression[J]. Veterinary Microbiology, 2013,164(3-4):212-221.
URL pmid: 23562137 |
[44] |
Shi D, Shi H, Sun D, et al. Nucleocapsid interacts with NPM1 and protects it from proteolytic cleavage, enhancing cell survival, and is involved in PEDV growth[J]. Sci Rep, 2017,7:39700.
doi: 10.1038/srep39700 URL pmid: 28045037 |
[45] |
Wongthida P, Liwnaree B, Wanasen N, et al. The role of ORF3 accessory protein in replication of cell-adapted porcine epidemic diarrhea virus(PEDV)[J]. Archives of Virology, 2017,162(9):2553-2563.
URL pmid: 28474223 |
[46] |
Kaewborisuth C, He Q, Jongkaewwattana A. The accessory protein ORF3 contributes to porcine epidemic diarrhea virus replication by direct binding to the spike protein[J]. Viruses, 2018,10(8):e399.
doi: 10.3390/v10080399 URL pmid: 30060558 |
[47] |
Ye S, Li Z, Chen F, et al. Porcine epidemic diarrhea virus ORF3 gene prolongs S-phase, facilitates formation of vesicles and promotes the proliferation of attenuated PEDV[J]. Virus Genes, 2015,51(3):385-392.
URL pmid: 26531166 |
[48] | Si F, Hu X, Wang C, et al. Porcine epidemic diarrhea virus(PEDV)ORF3 enhances viral proliferation by inhibiting apoptosis of infected cells[J]. Viruses, 2020,12(2):214. |
[49] |
Lee C, Kim Y, Jeon JH. JNK and p38 mitogen-activated protein kinase pathways contribute to porcine epidemic diarrhea virus infection[J]. Virus Research, 2016,222:1-12.
URL pmid: 27215486 |
[50] |
Qian S, Zhang W, Jia X, et al. Isolation and identification of porcine epidemic diarrhea virus and its effect on host natural immune response[J]. Frontiers in Microbiology, 2019,10:2272.
doi: 10.3389/fmicb.2019.02272 URL pmid: 31636617 |
[51] |
Temeeyasen G, Sinha A, Gimenez-Lirola LG, et al. Differential gene modulation of pattern-recognition receptor TLR and RIG-I-like and downstream mediators on intestinal mucosa of pigs infected with PEDV non S-INDEL and PEDV S-INDEL strains[J]. Virology, 2018,517:188-198.
URL pmid: 29249266 |
[52] |
Sun M, Yu Z, Ma J, et al. Down-regulating heat shock protein 27 is involved in porcine epidemic diarrhea virus escaping from host antiviral mechanism[J]. Vet Microbiol, 2017,205:6-13.
URL pmid: 28622863 |
[1] | CHENG Wen-yu, ZHANG Bo-xin, ZHAO Hong-yuan, CHEN Yan, XIE Juan-ping. Research Progress in Natural Products Against Porcine Epidemic Diarrhea Virus [J]. Biotechnology Bulletin, 2022, 38(12): 127-136. |
[2] | CHEN Ting, XIE Mei-ying, WEI Li-min, OUYANG Kun, CHENG Xiao, ZHANG Yong-liang. Inhibitory Effects of Porcine Milk-derived Exosome on Porcine Epidemic Diarrhea Virus [J]. Biotechnology Bulletin, 2021, 37(12): 141-150. |
[3] | ZHANG Li-jie, LI Xiao-yu, CEN You-fei, ZHOU Zu-ping, PU Shi-ming. Effects of the Characteristic Changes of Mice Hematopoietic Stem/Progenitor Cells on the Aged Immune Imbalance in the Aging Process [J]. Biotechnology Bulletin, 2018, 34(8): 199-203. |
[4] | Yang Bingzhen, Zhang Min, Wang Kejian. Role of NF-κB Signal Pathway in the Innate Immune System of Fish [J]. Biotechnology Bulletin, 2014, 0(1): 46-52. |
[5] | Li Yiping, Wang Xiao. Advance in the Nucleotide Binding and Oligomerization Domain (NOD)-like Receptors (NLRs) [J]. Biotechnology Bulletin, 2013, 0(7): 36-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||