Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (4): 204-210.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0615
Previous Articles Next Articles
ZHANG Gai-tian(), QI Hui, YANG Suo-ning, CHU Zhi-yun, TIAN Tian, YUAN Su-xia(), LIU Chun()
Received:
2020-08-19
Online:
2021-04-26
Published:
2021-05-13
Contact:
YUAN Su-xia,LIU Chun
E-mail:gaitianzhang@163.com;yuansuxia@caas.cn;liuchun@caas.cn
ZHANG Gai-tian, QI Hui, YANG Suo-ning, CHU Zhi-yun, TIAN Tian, YUAN Su-xia, LIU Chun. Research Progress of Floral Organ Vacuole pH Regulating Flower Color Formation[J]. Biotechnology Bulletin, 2021, 37(4): 204-210.
[1] |
Vainstein A, Lewinsohn E, Pichersky E, et al. Floral fragrance. New inroads into an old commodity[J]. Plant Physiology, 2001,127(4):1383-1389.
doi: 10.1104/pp.010706 URL |
[2] | 隋昕. 香雪兰UDP-葡萄糖:类黄酮3-O-葡萄糖基转移酶基因的克隆及其功能鉴定[D]. 长春:东北师范大学, 2011. |
Sui X. cDNA cloning and characterization of UDP-glucose:anthocyanin 3-O-glucosyltransferase in Freesia hybrida[D]. Changchun:Northeast Normal University, 2011. | |
[3] |
Farzad M, Griesbach R, Weiss MR. Floral color change in Viola cornuta L. (Violaceae):a model system to study regulation of anthocyanin production[J]. Plant Science, 2002,162(2):225-231.
doi: 10.1016/S0168-9452(01)00557-X URL |
[4] | 戴思兰, 洪艳. 基于花青素苷合成和呈色机理的观赏植物花色改良分子育种[J]. 中国农业科学, 2016,49(3):529-542. |
Dai SL, Hong Y. Molecular breeding for flower colors modification on ornamental plants based on the mechanism of anthocyanins biosynjournal and coloration[J]. Scientia Agricultura Sinica, 2016,49(3):529-542. | |
[5] | 陈凯利. 葡萄风信子MYB和bHLH转录因子对花青苷合成的调控研究[D]. 杨陵:西北农林科技大学, 2017. |
Chen KL. The regulation of anthocyanin biosynthesis by MYB and bHLH transcription factors in grape hyacinth(Muscari armeniacum)[D]. Yangling:Northwest A&F University, 2017. | |
[6] | 向理理. 菊花花青苷代谢相关转录因子CmMYB#7和CmbHLH2鉴别及其调控机制[D]. 杭州:浙江大学, 2019. |
Xiang LL. The mechanisms of CmMYB#7 and CmbHLH2 regulating anthocyanin metabolism in chrysanthemum[D]. Hangzhou:Zhejiang University, 2019. | |
[7] |
Schreiber HD, Swink AM, Godsey TD. The chemical mechanism for Al3+ complexing with delphinidin:a model for the bluing of hydrangea sepals[J]. Journal of Inorganic Biochemistry, 2010,104(7):732-739.
doi: 10.1016/j.jinorgbio.2010.03.006 pmid: 20394986 |
[8] | Tanaka Y. Recent progress in flower color modification by biotechnology[J]. Tanpakushitsu Kakusan Koso, 2008,53(9):1166-1172. |
[9] |
Noda N, Yoshioka S, Kishimoto S, et al. Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism[J]. Science Advances, 2017,3(7):e1602785.
doi: 10.1126/sciadv.1602785 URL |
[10] |
Ito T, Oyama K, Yoshida K. Direct observation of hydrangea blue-complex composed of 3-O-glucosyldelphinidin, Al3+ and 5-O-acylquinic acid by ESI-Mass spectrometry[J]. Molecules, 2018,23(6):1424.
doi: 10.3390/molecules23061424 URL |
[11] | Yoshida K, Mori M, Kondo T. Blue flower color development by anthocyanins:from chemical structure to cell physiology[J]. Cheminform, 2009,26(44):884-915. |
[12] |
Takashi N, Kenshiro O, Masahira H, et al. Tonoplast- and plasma membrane-localized aquaporin-family transporters in blue hydrangea sepals of aluminum hyperaccumulating plant[J]. PLoS One, 2012,7(8):e43189.
doi: 10.1371/journal.pone.0043189 URL |
[13] |
Shoji K, Miki N, Nakajima N, et al. Perianth bottom-specific blue color development in Tulip cv. Murasakizuisho requires ferrc ions[J]. Plant Cell Physiol, 2007,48(7):243-251.
doi: 10.1093/pcp/pcl060 URL |
[14] |
Shiono M, Matsugaki N, Takeda K. Structure of commelinin, a blue complex pigment from the blue flowers of Commelina communis[J]. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 2008,84(10):452-456.
doi: 10.2183/pjab.84.452 URL |
[15] |
Shiono M, Matsugaki N, Takeda K. Phytochemistry:structure of the blue cornflower pigment[J]. Nature, 2005,436(7052):791.
doi: 10.1038/436791a URL |
[16] | B.B.布坎南. . 植物生物化学与分子生物学[M]. 北京: 科学出版社, 2002. |
Buchanan BB. Biochemistry and molecular biology of plants[M]. Beijing: Science Press, 2002. | |
[17] |
Goto T, Tamura H, Kawai T, et al. Chemistry of metalloanthocyanins[J]. Annals of the New York Academy of Sciences, 1987,471(1):155-173.
doi: 10.1111/nyas.1986.471.issue-1 URL |
[18] |
Asen S, Stewart RN, Norris KH. Anthocyanin, flavonol copigments, and pH responsible for larkspur flower color[J]. Phytochemistry, 1975,14(12):2677-2682.
doi: 10.1016/0031-9422(75)85249-6 URL |
[19] |
Asen S, Stewart RN, Norris KH. Co-pigmentation of anthocyanins in plant tissues and its effect on color[J]. Phytochemistry, 1972,11(3):1139-1144.
doi: 10.1016/S0031-9422(00)88467-8 URL |
[20] |
Ryoji T, Noriko Y, Nobuyuki Y. A MYB transcription factor controls flower color in soybean[J]. Journal of Heredity, 2013,104(1):149-153.
doi: 10.1093/jhered/ess081 URL |
[21] |
Quattrocchio F, Verweij W, Kroon A, et al. PH4 of petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with Basic-Helix-Loop-Helix transcription factors of the anthocyanin pathway[J]. The Plant Cell, 2006,18(5):1274-1291.
doi: 10.1105/tpc.105.034041 URL |
[22] |
Stewart RN, Norris KH, Asen S. Microspectrophotometric measurement of pH and pH effect on color of petal epidermal cells[J]. Phytochemistry, 1975,14(4):937-942.
doi: 10.1016/0031-9422(75)85162-4 URL |
[23] |
Yoshida K, Kawachi M, Mori M, et al. The involvement of tonoplast proton pumps and Na+(K+)/H+ exchangers in the change of petal color during flower opening of morning glory, Ipomoea tricolor cv. Heavenly Blue[J]. Plant and Cell Physiology, 2005,46(3):407-415.
pmid: 15695444 |
[24] |
Fukada-Tanaka S, Inagaki Y, Yamaguchi T, et al. Colour-enhancing protein in blue petals. Spectacular Morning Glory blooms rely on a behind-the-scenes proton exchanger[J]. Nature, 2000,407(6804):581.
pmid: 11034195 |
[25] |
Qi Y, Lou Q, Li H, et al. Anatomical and biochemical studies of bicolored flower development in Muscari latifolium[J]. Protoplasma, 2013,250(6):1273-1281.
doi: 10.1007/s00709-013-0509-8 URL |
[26] |
Yoshida K, Toyama-Kato Y, Kameda K, et al. Sepal color Variation of Hydrangea macrophylla and vacuolar pH measured with a proton-selective microelectrode[J]. Plant and Cell Physiology, 2003,44(3):262-268.
pmid: 12668772 |
[27] |
Tatsuzawa F, Tanikawa N, Nakayama M. Red-purple flower color and delphinidin-type pigments in the flowers of Pueraria lobata(Leguminosae)[J]. Phytochemistry, 2017,137:52-56.
doi: S0031-9422(17)30045-6 pmid: 28189342 |
[28] |
Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, et al. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin[J]. Plant and Cell Physiology, 2007,48(11):1589-1600.
pmid: 17925311 |
[29] |
Noda N. Recent advances in the research and development of blue flowers[J]. Breeding Science, 2018,68(1):79-87.
doi: 10.1270/jsbbs.17132 URL |
[30] |
Wilson GH, Grolig F, Kosegarten H. Differential pH restoration after ammonia-elicited vacuolar alkalisation in rice and maize root hairs as measured by fluorescence ratio[J]. Planta, 1998,206(1):154-161.
doi: 10.1007/s004250050386 URL |
[31] |
Morita Y, Hoshino A. Recent advances in flower color variation and patterning of Japanese morning glory and petunia[J]. Breeding Science, 2018,68(1):128-138.
doi: 10.1270/jsbbs.17107 URL |
[32] |
Griesbach RJ. The effect of the Ph 6 gene on the color of Petunia hybrida Vilm. flowers[J]. Journal of the American Society for Horticultural Science, 1998,123(4):647-650.
doi: 10.21273/JASHS.123.4.647 URL |
[33] |
Vlaming P, Schram AW, Wiering H. Genes affecting flower colour and pH of flower limb homogenates in Petunia hybrida[J]. Theoretical and Applied Genetics, 1983,66(3-4):271-278.
doi: 10.1007/BF00251158 pmid: 24263926 |
[34] |
Houwelingen AV, Souer E, Spelt K, et al. Analysis of flower pigmentation mutants generated by random transposon mutagenesis in Petunia hybrida[J]. Plant Journal, 1998,13(1):39-50.
pmid: 9680963 |
[35] |
Kasajima I, Sasaki K. A chimeric repressor of petunia PH4 . R2R3-MYB family transcription factor generates margined flowers in torenia[J]. Plant Signaling and Behavior, 2016,11(5):e1177693.
doi: 10.1080/15592324.2016.1177693 URL |
[36] |
Verweij W, Spelt CE, Bliek M, et al. Functionally similar WRKY proteins regulate vacuolar acidification in petunia and hair development in Arabidopsis[J]. Plant Cell, 2016,28(3):786.
doi: 10.1105/tpc.15.00608 URL |
[37] |
Alan L, Austen B, Lyndsey A, et al. Advances in the MYB-bHLH-WD repeat(MBW)pigment regulatory model:addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation[J]. Plant and Cell Physiology, 2017,58(9):1431-1441.
doi: 10.1093/pcp/pcx075 URL |
[38] |
Faraco M, Spelt C, Bliek M, et al. Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color[J]. Cell Reports, 2014,6(1):32-43.
doi: 10.1016/j.celrep.2013.12.009 URL |
[39] |
Li YB, Provenzano S, Bliek M, et al. Evolution of tonoplast P-ATPase transporters involved in vacuolar acidification[J]. New Phytologist, 2016,211(3):1092-1107.
doi: 10.1111/nph.2016.211.issue-3 URL |
[40] |
Verweij W, Spelt C, Di Sansebastiano GP, et al. An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour[J]. Nature Cell Biology, 2008,10(12):1456-1462.
doi: 10.1038/ncb1805 pmid: 18997787 |
[41] |
Eisenach C, Baetz U, Martinoia E. Vacuolar proton pumping:more than the sum of its parts?[J]. Trends in Plant Science, 2014,19(6):344-346.
doi: 10.1016/j.tplants.2014.03.008 URL |
[42] |
Faraco M, Li YB, Li SJ, et al. A tonoplast P3B -ATPase mediates fusion of two types of vacuoles in petal cells[J]. Cell Reports, 2017,19(12):2413-2422.
doi: 10.1016/j.celrep.2017.05.076 URL |
[43] | Shi C, Song R, Hu X, et al. Citrus PH5-like H+-ATPase genes:identification and transcript analysis to investigate their possible relationship with citrate accumulation in fruits[J]. Frontiers in Plant Science, 2015,6:135. |
[44] |
Cohen S, Itkin M, Yeselson Y, et al. The PH gene determines fruit acidity and contributes to the evolution of sweet melons[J]. Nature Communications, 2014,5:4026.
doi: 10.1038/ncomms5026 URL |
[45] |
Brett CL, Donowitz M, Rao R. Evolutionary origins of eukaryotic sodium/proton exchangers[J]. Am J Physiol Cell Physiol, 2005,288:C223-C239.
doi: 10.1152/ajpcell.00360.2004 URL |
[46] |
Bassil E, Blumwald E. The ins and outs of intracellular ion homeostasis:NHX-type cation/H+ transporters[J]. Current Opinion in Plant Biology, 2014,22:1-6.
doi: S1369-5266(14)00119-8 pmid: 25173972 |
[47] |
Yoshida K, Kondo T, Okazaki Y, et al. Cause of blue petal colour[J]. Nature, 1995,373(6512):291.
doi: 10.1038/373291a0 URL |
[48] |
Toshio Y, Sachiko FT, Yoshishige I, et al. Genes encoding the vacuolar Na+/H+ exchanger and flower coloration[J]. Plant Cell Physiology, 2001,42(5):451-461.
doi: 10.1093/pcp/pce080 URL |
[49] |
Makoto O, Sachiko FT, Atsushi H, et al. Characterization of a novel Na+/H+ antiporter gene InNHX2 and comparison of InNHX2 with InNHX1, which is responsible for blue flower coloration by increasing the vacuolar pH in the Japanese Morning Glory[J]. Plant and Cell Physiology, 2005,46(2):259-267.
doi: 10.1093/pcp/pci028 URL |
[1] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[2] | ZHANG He-chen, YUAN Xin, GAO Jie, WANG Xiao-chen, WANG Hui-juan, LI Yan-min, WANG Li-min, FU Zhen-zhu, LI Bao-yin. Mechanism of Flower Petal Coloration and Molecular Breeding [J]. Biotechnology Bulletin, 2023, 39(5): 23-31. |
[3] | ZHANG Ye-meng, ZHU Li-li, CHEN Zhi-guo. Identification and Expression Analysis of NHX Gene Family in Quinoa Under Salt Stress [J]. Biotechnology Bulletin, 2022, 38(12): 184-193. |
[4] | Zhou Zejun, Pang Huanying, Ding Yu, Jian Jichang, Wu Zaohe. Molecular Cloning and Bioinformatics Analysis of Outer Membrane Protein H Gene from Vibrio alginolyticus Strain HY9901 [J]. Biotechnology Bulletin, 2013, 0(4): 116-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||