Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (5): 76-83.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1335
Previous Articles Next Articles
ZHANG Yu(), HAYSA· Ayelhan, RABIGUL· Sawut, SHI Chun-ming, ZHANG Ren-ming()
Received:
2020-10-31
Online:
2021-05-26
Published:
2021-06-11
Contact:
ZHANG Ren-ming
E-mail:zhangyxinjiang@163.com;xj01zrm@163.com
ZHANG Yu, HAYSA· Ayelhan, RABIGUL· Sawut, SHI Chun-ming, ZHANG Ren-ming. Analysis of High Temperature Tolerance in Early Development of Esox lucius[J]. Biotechnology Bulletin, 2021, 37(5): 76-83.
基因 Gene | 引物序列 Primer sequence(5'-3') | 片段长度Frag-ment length/bp |
---|---|---|
HSP70 | F:ATCAGCCAGGGGTGCTCATT | 200 |
R:CTTGTTCTCCTTCCCAGTGC | ||
管家基因β-actin Housekeeping genes | F:AAGATGAAATCGCCGCACTG | 215 |
R:TGCCAGATCTTCTCCATG |
Table 1 Fluorescent quantitative PCR primers
基因 Gene | 引物序列 Primer sequence(5'-3') | 片段长度Frag-ment length/bp |
---|---|---|
HSP70 | F:ATCAGCCAGGGGTGCTCATT | 200 |
R:CTTGTTCTCCTTCCCAGTGC | ||
管家基因β-actin Housekeeping genes | F:AAGATGAAATCGCCGCACTG | 215 |
R:TGCCAGATCTTCTCCATG |
温度 Temperature/℃ | 受精卵数量/粒 The number of fertilized eggs/Grain | 50%破膜时间 50% film breaking time/h | 正常上浮鱼苗数量/尾 Number of floating fry/Tail | 上浮率 Floating ratio/% |
---|---|---|---|---|
15±0.5 | 959 | 188 | 526 | 73.47 |
17±0.5 | 1096 | 139 | 602 | 73.58 |
19±0.5 | 1254 | 123 | 653 | 69.76 |
21±0.5 | 950 | 102 | 372 | 52.46 |
Table 2 Effects of different incubation water temperature on floatation rate of E. lucius fry
温度 Temperature/℃ | 受精卵数量/粒 The number of fertilized eggs/Grain | 50%破膜时间 50% film breaking time/h | 正常上浮鱼苗数量/尾 Number of floating fry/Tail | 上浮率 Floating ratio/% |
---|---|---|---|---|
15±0.5 | 959 | 188 | 526 | 73.47 |
17±0.5 | 1096 | 139 | 602 | 73.58 |
19±0.5 | 1254 | 123 | 653 | 69.76 |
21±0.5 | 950 | 102 | 372 | 52.46 |
驯化温度Acclimation temperature/℃ | 升温速率Heating rate/(℃/d) | CTmax/℃ | CTmax出现时间CTmax appearance time/min |
---|---|---|---|
18±0.5 | 1±0.5 | 32.90 | 1152 |
21±0.5 | 1±0.5 | 33.06 | 1259 |
24±0.5 | 1±0.5 | 33.36 | 1418 |
27±0.5 | 1±0.5 | 33.27 | 1735 |
Table 3 CTmax of E. lucius fry at different acclimation temperatures
驯化温度Acclimation temperature/℃ | 升温速率Heating rate/(℃/d) | CTmax/℃ | CTmax出现时间CTmax appearance time/min |
---|---|---|---|
18±0.5 | 1±0.5 | 32.90 | 1152 |
21±0.5 | 1±0.5 | 33.06 | 1259 |
24±0.5 | 1±0.5 | 33.36 | 1418 |
27±0.5 | 1±0.5 | 33.27 | 1735 |
Fig.2 Expression of HSP70 gene in E. lucius different tissues under different high temperature stress Different letters refer to there is significant difference within the relative expression of the HSP70 gene in the same tissue under different high temperature stress(P<0.05)
Fig.3 Expression of HSP70 gene in E. lucius different tissues under the same high temperature stress Different letters indicate there is significant difference within the relative expression of the HSP70 gene in different tissues under the same high temperature stress(P<0.05)
Fig.4 Expression of HSP70 gene in E. lucius different tis-sues under different times of high temperature stress Different letters indicate there is significant difference within the relative expression of the HSP70 gene in the same tissue under different times of high temperature stress(P<0.05)
Fig.5 Expression of HSP70 gene in E. lucius different tissues under the same time of high temperature stress Different letters indicate there was significant difference within the relative expression of the HSP70 gene in the different tissues under the same time of high temperature stress(P<0.05)
[1] | 陈全震, 曾江宁, 高爱根, 等. 鱼类热忍耐温度研究进展[J]. 水产学报, 2004,28(5):562-567. |
Chen QZ, Zeng JN, Gao AG, et al. Advances in study of temperature of thermal tolerance of fishes[J]. Journal of Fisheries of China, 2004,28(5):562-567. | |
[2] |
August SM, Hicks BJ. Water temperature and upstream migration of glass eels in New Zealand:Implications of climate change[J]. Environmental Biology of Fishes, 2008,81(2):195-205.
doi: 10.1007/s10641-007-9191-z URL |
[3] |
Beitinger TL, Bennett WA, Mccauley RW. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature[J]. Environmental Biology of Fishes, 2000,58:237-275.
doi: 10.1023/A:1007676325825 URL |
[4] |
Monica HR, Fernando BR. Temperature tolerance polygon of Poecilia sphenops valenciennes(Pisces:Poeciliidae)[J]. Journal of Thermal Biology, 2002,27:1-5.
doi: 10.1016/S0306-4565(01)00008-0 URL |
[5] | Bicego KC, Barros CH, Branco GS. Physiology of temperature regulation:Comparative aspects[J]. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 2007,147:616-639. |
[6] | 庞旭. 基于温度变化的鱼类生理生态(热耐受、代谢及游泳)响应研究[D]. 重庆:重庆大学, 2014. |
Pang X. Research on the fish eco-physiological(thermal tolerance, metabolism and swimming)response based on temperature changes[D]. Chongqing:Chongqing University, 2014. | |
[7] | 崔雯婷, 宋骏杰, 田洪林, 等. 黄茅海五种常见海洋生物的热耐受性[J]. 水产学报, 2018,42(4):522-533. |
Cui WT, Song JJ, Tian HL, et al. The thermal tolerance of five common marine species in Huangmao Sea, the South China Sea[J]. Journal of Fisheries of China, 2018,42(4):522-533. | |
[8] | Beitinger TJ, Lutterschmidt WI. Measures of thermal tolerance in encyclopedia of fish physiology-fromgenome to environment[M]. San Diego, Calif:Academic Press, 2011: 1695-1702. |
[9] |
Lund SG, Ruberte MR, Hofmann GE. Turning up the heat:The effects of thermal acclimation on the kinetics of hsp70 gene expression in the eurythermal goby, Gillichthys mirabilis[J]. Comparative Biochemistry and Physiology, part A, 2005,143:435-446.
doi: 10.1016/j.cbpa.2005.12.026 URL |
[10] |
Feder ME, Hofmann GE. Heat-shock proteins, molecular chaperones, and the stress response:evolutionary and ecological physiology[J]. Annual Review of Physiology, 1999,61:243-282.
doi: 10.1146/annurev.physiol.61.1.243 URL |
[11] |
Li GC, Mivechi NF, Weitzel G. Heat shock proteins, thermos tolerance, and their relevance to clinical hyperthermia[J]. International Journal of Hyperthermia, 1995,11:459-488.
pmid: 7594802 |
[12] | Koban M, Yup AA, Agellon LB, et al. Molecular adaptation to environmental temperature:heat-shock response of the eurythermal teleost Fundulus heteroclitus[J]. Molecular Marine Biology Biotechnology, 1991,1:1-17. |
[13] |
Scott MA, Locke M, Buck LT. Tissue-specific expression of inducible and constitutive Hsp70 isoforms in the western painted turtle[J]. The Journal Experimental Biology, 2002,206:303-311.
doi: 10.1242/jeb.00107 URL |
[14] |
Parsell DA, Lindquist S. The function of heat-shock proteins in stress tolerance:degradation and reactivation of damaged proteins[J]. Annual Review of Genetics, 1993,27:437-496.
doi: 10.1146/annurev.ge.27.120193.002253 URL |
[15] | Lyytikainen T, Koskela J, Rissanen I. Thermal resistance and upper lethal temperatures of underyearling lake inari Arctic charr[J]. Journal of Fish Biology, 1997,51(3):515-525. |
[16] | 蔡泽平, 陈浩如, 金启增, 等. 热废水对大亚湾三种经济鱼类热效应的研究[J]. 热带海洋, 1999,18(2):11-19. |
Cai ZP, Chen HR, Jin QZ, et al. Influence of thermal power effluent on three species of fishes in DayaBay[J]. Tropic Oceanology, 1999,18(2):11-19. | |
[17] | 田洪林, 曹亮, 刘金虎, 等. 驯化水温及温升速率对三门湾三种虾蟹类热耐受性的影响[J]. 海洋科学, 2018,42(4):43-52. |
Tian HL, Cao L, Liu JH, et al. Impact of the acclimation temperature and warming rate on three common crustaceans in Sanmen Bay, the East China Sea[J]. Marine Sciences, 2018,42(4):43-52. | |
[18] |
Scaion D, Belhomme M, Sébert P. Pressure and temperature interactions on aerobic metabolism of migrating European silver eel[J]. Respiratory Physiology & Neurobiology, 2008,164(3):319-322.
doi: 10.1016/j.resp.2008.08.001 URL |
[19] | 郭建丽, 马爱军, 田岳强, 等. 鱼类抗逆性状选育研究进展[J]. 海洋科学, 2013,37(10):148-156. |
Guo JL, Ma AJ, Tian YQ, et al. Progress of breeding for stress tolerance in fish[J]. Marine Sciences, 2013,37(10):148-156. | |
[20] | 刘海林, 张志勇, 张志伟, 等. 光照、温度对黑鲷(♀)×真鲷(♂)杂交子代受精卵孵化效果的影响[J]. 海洋科学, 2018,42(5):108-115. |
Liu HL, Zhang ZY, Zhang ZW, et al. Effect of illumination and temperature on zygote hatching and larval survival of hybrids obtained from Acanthopagrus schlegelii(♀)×Pagrosomus major(♂)[J]. Marine Sciences, 2018,42(5):108-115. | |
[21] | 黄贤克, 单乐州, 闫茂仓, 等. 黄姑鱼胚胎发育及其与温度和盐度的关系[J]. 海洋科学, 2017,41(7):44-50. |
Huang XK, Shan LZ, Yan MC, et al. Embryonic development of Nibeaalbiflora and the effects of temperature and salinity on embryogenesis[J]. Marine Sciences, 2017,41(7):44-50. | |
[22] | 任慕莲, 郭焱, 张人铭, 等. 中国额尔齐斯河鱼类资源及渔业[M]. 乌鲁木齐: 新疆科技卫生出版社, 2002: 80-87. |
Ren ML, Guo Y, Zhang RM, et al. Fisheries resources and fishery of the Ertixhe river in China[M]. Urumqi: Xinjiang Science, Technology and Health Press, 2002: 80-87. | |
[23] | 齐遵利, 张秀文, 韩叙, 等. 温度对白斑狗鱼胚胎发育的影响[J]. 淡水渔业, 2010,40(4):76-79. |
Qi ZL, Zhang XW, Han X, et al. The effect of temperature on embryonic development of Esoxlucius[J]. Freshwater Fisheries, 2010,40(4):76-79. | |
[24] |
Lutterschmidt WI, Hutchison VH. The critical thermal maximum:data to support the onset of spasms as the definitive end point[J]. Canadian Journal of Zoology, 1997,75:1553-1560.
doi: 10.1139/z97-782 URL |
[25] | Bennett WA, Beitinger TL. Temperature tolerance of the sheepshead minnow, Cyprinodonvariegatus[J]. Copeia, 1997,1:77-87. |
[26] |
Mora C, Ospina F. Thermal tolerance and potential impact of sea warming on reef fishes from Gorgona Island(Eastern Pacific Ocean)[J]. Marine Biology, 2001,139:765-769.
doi: 10.1007/s002270100626 URL |
[27] |
Mora C, Maya MF. Effect of the rate of temperature increase of the dynamic method on the heat tolerance of fishes[J]. Journal of Thermal Biology, 2006,31:337-341.
doi: 10.1016/j.jtherbio.2006.01.005 URL |
[28] | 曲凌云, 相建海, 孙修勤, 等. 温度刺激下栉孔扇贝不同组织热休克蛋白HSP70 的表达研究[J]. 高技术通讯, 2005,15(5):96-100. |
Qu LY, Xiang JH, Sun XQ, et al. Expression analysis of HSP70 in various tissues of Chlamysfarreri under thermal stress[J]. Chinese High Technology Letters, 2005,15(5):96-100. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||