Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (12): 11-26.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0432
Previous Articles Next Articles
YUE Man-fang1,2(), ZHANG Chun1(), WU Zhong-yi1()
Received:
2022-05-23
Online:
2022-12-26
Published:
2022-12-29
Contact:
ZHANG Chun,WU Zhong-yi
E-mail:2278874241@qq.com;spring2007318@163.com;zwu22@126.com
YUE Man-fang, ZHANG Chun, WU Zhong-yi. Research Progress in the Structural and Functional Analysis of Plant Transcription Factor AP2/ERF Protein Family[J]. Biotechnology Bulletin, 2022, 38(12): 11-26.
物种Species | AP2 | ERF | DREB | RAV | Soloist | 总计 Total |
---|---|---|---|---|---|---|
拟南芥 Arabidopsis thaliana | 18 | 65 | 57 | 6 | 1 | 147[ |
玉米Zea mays | 44 | 105 | 61 | 4 | 0 | 214[ |
水稻Oryza sativa | 23 | 118 | 23 | 4 | 2 | 170[ |
大豆G. max | 26 | 84 | 36 | 2 | 0 | 148[ |
胡萝卜D. carota | 39 | 144 | 71 | 10 | 3 | 267[ |
甘蓝B. oleracea | 32 | 88 | 91 | 13 | 2 | 226[ |
菠萝A. omosus | 24 | 48 | 22 | 2 | 1 | 97[ |
烟草N. tabacum | 29 | 341 | 5 | 0 | 375[ | |
玫瑰R. rugosa | 17 | 68 | 44 | 0 | 6 | 135[ |
油菜B. napus | 58 | 250 | 194 | 26 | 3 | 531[ |
毛果杨P. trichocarpa | 26 | 91 | 77 | 5 | 1 | 200[ |
谷子S. italica | 28 | 90 | 48 | 5 | 0 | 171[ |
辣椒C. annuum | 29 | 144 | 1 | 1 | 175[ | |
甜橙C. sinensis | 13 | 91 | 4 | 108[ | ||
雷蒙德氏棉 G. raimondii | 32 | 142 | 80 | 11 | 4 | 269[ |
茄子S. melongena | 21 | 49 | 104 | 3 | 1 | 178[ |
莲花N. nucifera | 18 | 55 | 42 | 5 | 1 | 121[ |
柳树S. matsudana | 55 | 166 | 135 | 6 | 2 | 364[ |
油棕E. guineensis | 34 | 131 | 5 | 2 | 172[ |
Table 1 Distribution of plant AP2/ERF transcription factor
物种Species | AP2 | ERF | DREB | RAV | Soloist | 总计 Total |
---|---|---|---|---|---|---|
拟南芥 Arabidopsis thaliana | 18 | 65 | 57 | 6 | 1 | 147[ |
玉米Zea mays | 44 | 105 | 61 | 4 | 0 | 214[ |
水稻Oryza sativa | 23 | 118 | 23 | 4 | 2 | 170[ |
大豆G. max | 26 | 84 | 36 | 2 | 0 | 148[ |
胡萝卜D. carota | 39 | 144 | 71 | 10 | 3 | 267[ |
甘蓝B. oleracea | 32 | 88 | 91 | 13 | 2 | 226[ |
菠萝A. omosus | 24 | 48 | 22 | 2 | 1 | 97[ |
烟草N. tabacum | 29 | 341 | 5 | 0 | 375[ | |
玫瑰R. rugosa | 17 | 68 | 44 | 0 | 6 | 135[ |
油菜B. napus | 58 | 250 | 194 | 26 | 3 | 531[ |
毛果杨P. trichocarpa | 26 | 91 | 77 | 5 | 1 | 200[ |
谷子S. italica | 28 | 90 | 48 | 5 | 0 | 171[ |
辣椒C. annuum | 29 | 144 | 1 | 1 | 175[ | |
甜橙C. sinensis | 13 | 91 | 4 | 108[ | ||
雷蒙德氏棉 G. raimondii | 32 | 142 | 80 | 11 | 4 | 269[ |
茄子S. melongena | 21 | 49 | 104 | 3 | 1 | 178[ |
莲花N. nucifera | 18 | 55 | 42 | 5 | 1 | 121[ |
柳树S. matsudana | 55 | 166 | 135 | 6 | 2 | 364[ |
油棕E. guineensis | 34 | 131 | 5 | 2 | 172[ |
物种 Species | 基因 Gene | 功能 Function | 参考文献 Reference |
---|---|---|---|
水稻O. sativa | CRL5 | 参与水稻冠根的形成Participate in the formation of rice crown roots | [ |
水稻O. sativa | OsERF3 | 调控水稻冠根的伸长Regulate the extension of rice crown roots | [ |
水稻O. sativa | OsERF71 | 改变根的结构Change the structure of the root | [ |
水稻O. sativa | OsAP2/ERF-40 | 促进水稻不定根发育Promote the development of rice adventitious root | [ |
杨树Populus | PtaERF003 | 正调控不定根和侧根增殖 Positive regulation of adventitiou roots and side root proliferation | [ |
菊花C. morifolium | CmERF053 | 调节植物枝条和侧根Adjust plant branches and side roots | [ |
拟南芥A. thaliana | ERF13 | 调节侧根发育Adjust the lateral root development | [ |
拟南芥A. thaliana | ERF II-1/ERF II-2 | 调节侧根发育Adjust the lateral root development | [ |
拟南芥A. thaliana | BrAP2 | 参与萼片修饰Participate in sepal modification | [ |
蝴蝶兰P. equestris | PeERF1 | 唇瓣表皮发育Nanoridge development on lip epidermis | [ |
水稻O. sativa | OsRPH1 | 负调控株高Negative regulatory strain height | [ |
水稻O. sativa | OsRPH2 | 负调控株高Negative regulatory strain height | [ |
拟南芥A. thaliana | BOLITA | 调节叶片大小Adjust the sizes of the leaves | [ |
玉米Z. Mays | sid1/ids1 | 调控花序分生与小穗分生组织Regulating inflorescence and spikelet meristem | [ |
菊花C. morifolium | CmERF12 | 负调控菊花胚胎发育 Negative regulation of chrysanthemum embryonic development | [ |
番茄L. esculentum | LeERF2 | 促进果实成熟Promote fruit ripening | [ |
莴苣Lactuca sativa | LsAP2 | 调节莴苣种子形状Adjust the shape of lettuce seeds | [ |
鸭茅Dactylis glomerata | DgERF056 | 调控鸭茅的开花和发育 Regulating the flowering and development of orchard grass | [ |
Table 2 AP2/ERF transcription factor participating in growth and development
物种 Species | 基因 Gene | 功能 Function | 参考文献 Reference |
---|---|---|---|
水稻O. sativa | CRL5 | 参与水稻冠根的形成Participate in the formation of rice crown roots | [ |
水稻O. sativa | OsERF3 | 调控水稻冠根的伸长Regulate the extension of rice crown roots | [ |
水稻O. sativa | OsERF71 | 改变根的结构Change the structure of the root | [ |
水稻O. sativa | OsAP2/ERF-40 | 促进水稻不定根发育Promote the development of rice adventitious root | [ |
杨树Populus | PtaERF003 | 正调控不定根和侧根增殖 Positive regulation of adventitiou roots and side root proliferation | [ |
菊花C. morifolium | CmERF053 | 调节植物枝条和侧根Adjust plant branches and side roots | [ |
拟南芥A. thaliana | ERF13 | 调节侧根发育Adjust the lateral root development | [ |
拟南芥A. thaliana | ERF II-1/ERF II-2 | 调节侧根发育Adjust the lateral root development | [ |
拟南芥A. thaliana | BrAP2 | 参与萼片修饰Participate in sepal modification | [ |
蝴蝶兰P. equestris | PeERF1 | 唇瓣表皮发育Nanoridge development on lip epidermis | [ |
水稻O. sativa | OsRPH1 | 负调控株高Negative regulatory strain height | [ |
水稻O. sativa | OsRPH2 | 负调控株高Negative regulatory strain height | [ |
拟南芥A. thaliana | BOLITA | 调节叶片大小Adjust the sizes of the leaves | [ |
玉米Z. Mays | sid1/ids1 | 调控花序分生与小穗分生组织Regulating inflorescence and spikelet meristem | [ |
菊花C. morifolium | CmERF12 | 负调控菊花胚胎发育 Negative regulation of chrysanthemum embryonic development | [ |
番茄L. esculentum | LeERF2 | 促进果实成熟Promote fruit ripening | [ |
莴苣Lactuca sativa | LsAP2 | 调节莴苣种子形状Adjust the shape of lettuce seeds | [ |
鸭茅Dactylis glomerata | DgERF056 | 调控鸭茅的开花和发育 Regulating the flowering and development of orchard grass | [ |
物种 Species | 基因 Gene | 功能 Function | 参考文献 Reference |
---|---|---|---|
水稻O. sativa | OsBIERF3 | 正调控水稻对真菌和细菌的抗性Positive regulation of rice resistance to fungi and bacteria | [ |
玉米Z. Mays | ZmERF105 | 正调控玉米对大斑病菌的抗性Positive regulation of maize resistance to leaf spot pathogen | [ |
小麦T. aestivum | TaAP2-15 | 负调控小麦对条锈菌的抗性Negative regulation of wheat resistance to stripe rust | [ |
月季R.chinensis | RcERF099 | 正调控月季对葡萄孢菌的抗性Positive regulation of rose resistance to Botrytis | [ |
玉米Z. Mays | ZmEREB58 | 正调控玉米抗虫性Positive regulation of maize resistance to insect | [ |
拟南芥A. thaliana | AT4g13040 | 正调控拟南芥对细菌病原体的抗性Positive regulation of Arabidopsis resistance to bacterial pathogens | [ |
Table 3 AP2/ERF transcription factors involved in biological stress
物种 Species | 基因 Gene | 功能 Function | 参考文献 Reference |
---|---|---|---|
水稻O. sativa | OsBIERF3 | 正调控水稻对真菌和细菌的抗性Positive regulation of rice resistance to fungi and bacteria | [ |
玉米Z. Mays | ZmERF105 | 正调控玉米对大斑病菌的抗性Positive regulation of maize resistance to leaf spot pathogen | [ |
小麦T. aestivum | TaAP2-15 | 负调控小麦对条锈菌的抗性Negative regulation of wheat resistance to stripe rust | [ |
月季R.chinensis | RcERF099 | 正调控月季对葡萄孢菌的抗性Positive regulation of rose resistance to Botrytis | [ |
玉米Z. Mays | ZmEREB58 | 正调控玉米抗虫性Positive regulation of maize resistance to insect | [ |
拟南芥A. thaliana | AT4g13040 | 正调控拟南芥对细菌病原体的抗性Positive regulation of Arabidopsis resistance to bacterial pathogens | [ |
物种 Species | 基因 Gene | 功能 Function | 参考文献 Reference |
---|---|---|---|
玉米Z. Mays | ZmEREB180 | 正调控玉米耐涝性Positive regulation of waterlogging tolerance in maize | [ |
中间锦鸡儿C. intermedia | CiDREB3 | 正调控拟南芥耐旱性Positive regulation of drought tolerance in Arabidopsis | [ |
拟南芥A. thaliana | TINY | 正调控拟南芥耐旱性Positive regulation of drought tolerance in Arabidopsis | [ |
水稻O. sativa | OsERF83 | 正调控水稻的耐旱性Positive regulation of drought tolerance in rice | [ |
玉米Z. Mays | ZmERF21 | 正调控玉米的耐旱性Positive regulation of drought tolerance in maize | [ |
水稻O. sativa | OsERF101 | 正调控水稻耐旱性Positive regulation of drought tolerance in rice | [ |
玉米Z. Mays | ZmDREB2A | 正调控玉米耐旱性与耐热性Positive regulation of drought and heat tolerance in maize | [ |
小麦T. aestivum | TaERF1 | 正调控拟南芥抗旱性Positive regulation of drought resistance in Arabidopsis | [ |
拟南芥A. thaliana | AtRAP2.4 | 正调控拟南芥耐旱性Positive regulation of drought tolerance in Arabidopsis | [ |
辣椒C. annuum | CaERF109 | 受低温诱导Induced by low temperature | [ |
菊花C. morifolium | CmDREB6 | 正调控菊花耐热性Positive regulation of heat resistance in chrysanthemum | [ |
水稻O. sativa | OsDREBL | 正调控水稻耐冷性Positive regulation of cold tolerance in rice | [ |
水稻O. sativa | OsSub1C | 正调控水稻耐冷性Positive regulation of cold tolerance in rice | [ |
结缕草Zoysia japonica | ZjDREB1.4 | 正调控拟南芥对高温和冷冻胁迫的耐受性Positive regulation of Arabidopsis tolerance to high temperature and frozen stress | [ |
拟南芥A. thaliana | DREB1A | 受低温诱导Induced by low temperature | [ |
拟南芥A. thaliana | DREB2A | 受干旱、高盐和高温诱导Induced by drought,high salt and high temperature | [ |
水稻O. sativa | OsDREB1A/OsDREB1B | 正调控水稻对冷、干旱、高盐的耐受性Positive regulation the tolerance of rice to cold,drought,and high salt | [ |
陆地棉Gossypium hirsutum | GhERF13.12 | 正调控棉花耐盐性Positive regulation of cotton salt tolerance | [ |
大豆G. max | GmSGR | 正调控拟南芥耐盐性Positive regulation of salt tolerance in Arabidopsis | [ |
麻疯树Jatropha curcas | JcERF | 正调控拟南芥对盐的耐性Positive regulation of salt tolerance in Arabidopsis | [ |
羊草L. chinensis | LcDREB3a | 正调控拟南芥抗旱和抗盐性Positive regulation of drought and salt resistance in Arabidopsis | [ |
大豆G. max | GmERF3 | 正调控烟草对抗盐和抗旱性Positive regulation of drought and salt resistance in tobacco | [ |
大豆G. max | GmERF4 | 正调控烟草的耐盐性Positive regulation of salt tolerance in tobacco | [ |
大豆G. max | GmERF7 | 正调控烟草的耐盐性Positive regulation of salt tolerance in tobacco | [ |
火龙果H. undatus | HuERF1 | 正调控拟南芥的耐盐性Positive regulation of salt tolerance in Arabidopsis | [ |
大麦Hordeum vulgare | HvDREB1 | 正调控拟南芥的耐盐性Positive regulation of salt tolerance in Arabidopsis | [ |
玉米Z. Mays | ZmEREB102 | 正调控玉米的耐盐性Positive regulation of salt tolerance in maize | [ |
麻疯树J. curcas | JcDREB2 | 负调控水稻耐盐性Negative regulation of salt tolerance in rice | [ |
百脉根Lotus corniculatus | LcERF054 | 正调控拟南芥的耐盐性Positive regulation of salt tolerance in Arabidopsis | [ |
甜橙C. sinensis | CsERF36 | 正调控拟南芥的耐盐性Positive regulation of salt tolerance in Arabidopsis | [ |
Table 4 AP2/ERF transcription factors involved in abiotic stress
物种 Species | 基因 Gene | 功能 Function | 参考文献 Reference |
---|---|---|---|
玉米Z. Mays | ZmEREB180 | 正调控玉米耐涝性Positive regulation of waterlogging tolerance in maize | [ |
中间锦鸡儿C. intermedia | CiDREB3 | 正调控拟南芥耐旱性Positive regulation of drought tolerance in Arabidopsis | [ |
拟南芥A. thaliana | TINY | 正调控拟南芥耐旱性Positive regulation of drought tolerance in Arabidopsis | [ |
水稻O. sativa | OsERF83 | 正调控水稻的耐旱性Positive regulation of drought tolerance in rice | [ |
玉米Z. Mays | ZmERF21 | 正调控玉米的耐旱性Positive regulation of drought tolerance in maize | [ |
水稻O. sativa | OsERF101 | 正调控水稻耐旱性Positive regulation of drought tolerance in rice | [ |
玉米Z. Mays | ZmDREB2A | 正调控玉米耐旱性与耐热性Positive regulation of drought and heat tolerance in maize | [ |
小麦T. aestivum | TaERF1 | 正调控拟南芥抗旱性Positive regulation of drought resistance in Arabidopsis | [ |
拟南芥A. thaliana | AtRAP2.4 | 正调控拟南芥耐旱性Positive regulation of drought tolerance in Arabidopsis | [ |
辣椒C. annuum | CaERF109 | 受低温诱导Induced by low temperature | [ |
菊花C. morifolium | CmDREB6 | 正调控菊花耐热性Positive regulation of heat resistance in chrysanthemum | [ |
水稻O. sativa | OsDREBL | 正调控水稻耐冷性Positive regulation of cold tolerance in rice | [ |
水稻O. sativa | OsSub1C | 正调控水稻耐冷性Positive regulation of cold tolerance in rice | [ |
结缕草Zoysia japonica | ZjDREB1.4 | 正调控拟南芥对高温和冷冻胁迫的耐受性Positive regulation of Arabidopsis tolerance to high temperature and frozen stress | [ |
拟南芥A. thaliana | DREB1A | 受低温诱导Induced by low temperature | [ |
拟南芥A. thaliana | DREB2A | 受干旱、高盐和高温诱导Induced by drought,high salt and high temperature | [ |
水稻O. sativa | OsDREB1A/OsDREB1B | 正调控水稻对冷、干旱、高盐的耐受性Positive regulation the tolerance of rice to cold,drought,and high salt | [ |
陆地棉Gossypium hirsutum | GhERF13.12 | 正调控棉花耐盐性Positive regulation of cotton salt tolerance | [ |
大豆G. max | GmSGR | 正调控拟南芥耐盐性Positive regulation of salt tolerance in Arabidopsis | [ |
麻疯树Jatropha curcas | JcERF | 正调控拟南芥对盐的耐性Positive regulation of salt tolerance in Arabidopsis | [ |
羊草L. chinensis | LcDREB3a | 正调控拟南芥抗旱和抗盐性Positive regulation of drought and salt resistance in Arabidopsis | [ |
大豆G. max | GmERF3 | 正调控烟草对抗盐和抗旱性Positive regulation of drought and salt resistance in tobacco | [ |
大豆G. max | GmERF4 | 正调控烟草的耐盐性Positive regulation of salt tolerance in tobacco | [ |
大豆G. max | GmERF7 | 正调控烟草的耐盐性Positive regulation of salt tolerance in tobacco | [ |
火龙果H. undatus | HuERF1 | 正调控拟南芥的耐盐性Positive regulation of salt tolerance in Arabidopsis | [ |
大麦Hordeum vulgare | HvDREB1 | 正调控拟南芥的耐盐性Positive regulation of salt tolerance in Arabidopsis | [ |
玉米Z. Mays | ZmEREB102 | 正调控玉米的耐盐性Positive regulation of salt tolerance in maize | [ |
麻疯树J. curcas | JcDREB2 | 负调控水稻耐盐性Negative regulation of salt tolerance in rice | [ |
百脉根Lotus corniculatus | LcERF054 | 正调控拟南芥的耐盐性Positive regulation of salt tolerance in Arabidopsis | [ |
甜橙C. sinensis | CsERF36 | 正调控拟南芥的耐盐性Positive regulation of salt tolerance in Arabidopsis | [ |
物种Species | 基因Gene | 功能Function | 参考文献 Reference |
---|---|---|---|
丹参S. miltiorrhiza | Smoo8/Sm082 | 调控丹酚酸及丹参酮生物合成Regulation of salvianolic acid and tanshinone biosynthesis | [ |
丹参S. miltiorrhiza | SmAP1/SmAP2/SmERF2 | 调控丹参酮生物合成Regulation of tanshinone biosynthesis | [ |
丹参S. miltiorrhiza | SmERF73 | 调控丹参酮生物合成Regulation of tanshinone biosynthesis | [ |
草莓Fragaria×ananassa | FaERF#9 | 调节呋喃酮的生物合成Regulation of furanone biosynthesis | [ |
长春花Catharanthus roseus | CrERF5 | 正调控长春花双吲哚生物碱生物合成Positively regulates the biosynthesis of bisindole alkaloids | [ |
三七Panax notoginseng | PnERF2/PnERF3 | 参与三七皂苷的生物合成Participate in the biosynthesis of notoginsenosides | [ |
Table 5 AP2/ERF transcription factors involved in biosynthesis
物种Species | 基因Gene | 功能Function | 参考文献 Reference |
---|---|---|---|
丹参S. miltiorrhiza | Smoo8/Sm082 | 调控丹酚酸及丹参酮生物合成Regulation of salvianolic acid and tanshinone biosynthesis | [ |
丹参S. miltiorrhiza | SmAP1/SmAP2/SmERF2 | 调控丹参酮生物合成Regulation of tanshinone biosynthesis | [ |
丹参S. miltiorrhiza | SmERF73 | 调控丹参酮生物合成Regulation of tanshinone biosynthesis | [ |
草莓Fragaria×ananassa | FaERF#9 | 调节呋喃酮的生物合成Regulation of furanone biosynthesis | [ |
长春花Catharanthus roseus | CrERF5 | 正调控长春花双吲哚生物碱生物合成Positively regulates the biosynthesis of bisindole alkaloids | [ |
三七Panax notoginseng | PnERF2/PnERF3 | 参与三七皂苷的生物合成Participate in the biosynthesis of notoginsenosides | [ |
[1] |
Mao HD, Yu LJ, Han R, et al. ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis[J]. Plant Physiol Biochem, 2016, 105((9)):55-66.
doi: 10.1016/j.plaphy.2016.04.018 URL |
[2] | 付春, 刘晓伟, 王玲, 等. 阿拉伯岩芥AP2基因家族的生物信息学分析[J]. 安徽农业科学, 2020, 48(8):114-123. |
Fu C, Liu XW, Wang L, et al. Bioinformatics analysis of AP2 gene family in Aethionema arabicum[J]. J Anhui Agric Sci, 2020, 48(8):114-123. | |
[3] | 魏海超, 刘媛, 豆明珠, 等. 大豆AP2/ERF基因家族的分子进化分析[J]. 植物生理学报, 2015, 51(10):1706-1718. |
Wei HC, Liu Y, Dou MZ, et al. Molecular evolution of AP2/ERF gene family in Glycine max[J]. Plant Physiol J, 2015, 51(10):1706-1718. | |
[4] |
Jofuku KD, den Boer BG, van Montagu M, et al. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2[J]. Plant Cell, 1994, 6(9):1211-1225.
pmid: 7919989 |
[5] |
Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J]. Plant Cell, 1995, 7(2):173-182.
pmid: 7756828 |
[6] |
Kagaya Y, Ohmiya K, Hattori T. RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants[J]. Nucleic Acids Res, 1999, 27(2):470-478.
pmid: 9862967 |
[7] |
洪林, 杨蕾, 杨海健, 等. AP2/ERF转录因子调控植物非生物胁迫响应研究进展[J]. 植物学报, 2020, 55(4):481-496.
doi: 10.11983/CBB19243 |
Hong L, Yang L, Yang HJ, et al. Research advances in AP2/ERF transcription factors in regulating plant responses to abiotic stress[J]. Chin Bull Bot, 2020, 55(4):481-496. | |
[8] | 赵利锋, 柴团耀. AP2/EREBP转录因子在植物发育和胁迫应答中的作用[J]. 植物学通报, 2008, 43(1):89-101. |
Zhao LF, Chai TY. Roles of AP2/EREBP family of transcription factors in development and stress response of plants[J]. Chin Bull Bot, 2008, 43(1):89-101. | |
[9] |
Licausi F, Ohme-Takagi M, Perata P. APETALA2/Ethylene Responsive Factor(AP2/ERF)transcription factors:mediators of stress responses and developmental programs[J]. New Phytol, 2013, 199(3):639-649.
doi: 10.1111/nph.12291 URL |
[10] |
Nakano T, Suzuki K, Fujimura T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiol, 2006, 140(2):411-432.
pmid: 16407444 |
[11] |
Moose SP, Sisco PH. Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity[J]. Genes Dev, 1996, 10(23):3018-3027.
doi: 10.1101/gad.10.23.3018 URL |
[12] |
Klucher KM, Chow H, Reiser L, et al. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2[J]. Plant Cell, 1996, 8(2):137-153.
pmid: 8742706 |
[13] |
Allen MD, Yamasaki K, Ohme-Takagi M, et al. A novel mode of DNA recognition by a β-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA[J]. EMBO J, 1998, 17(18):5484-5496.
pmid: 9736626 |
[14] |
Shigyo M, Ito M. Analysis of gymnosperm two-AP2-domain-containing genes[J]. Dev Genes Evol, 2004, 214(3):105-114.
pmid: 14986134 |
[15] |
Nole-Wilson S, Krizek BA. DNA binding properties of the Arabidopsis floral development protein AINTEGUMENTA[J]. Nucleic Acids Res, 2000, 28(21):4076-4082.
pmid: 11058102 |
[16] | 邵文靖, 敖特根白音, 郎明林. AP2/ERF转录因子对植物非生物胁迫的应答机制研究进展[J]. 分子植物育种, 2020, 18(15):4981-4988. |
Shao WJ, Ao TGBY, Lang ML. Research Advances on the Mechanism of AP2/ERF Transcriptional Factors in Response to Abiotic Stresses in Plants[J]. Molecular Plant Breeding, 2020, 18(15):4981-4988. | |
[17] |
Hao DY, Ohme-Takagi M, Sarai A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor(ERF domain)in plant[J]. J Biol Chem, 1998, 273(41):26857-26861.
doi: 10.1074/jbc.273.41.26857 pmid: 9756931 |
[18] |
Yamaguchi-Shinozaki K, Shinozaki K. A novel cis -acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress[J]. Plant Cell, 1994, 6(2):251-264.
pmid: 8148648 |
[19] |
Thomashow MF. PLANT COLD ACCLIMATION:freezing tolerance genes and regulatory mechanisms[J]. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50:571-599.
doi: 10.1146/annurev.arplant.50.1.571 URL |
[20] |
邵文靖, 石洁, 张普, 等. ERF转录因子调控生物胁迫反应的研究进展[J]. 生物技术通报, 2021, 37(3):136-143.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0736 URL |
Shao WJ, Shi J, Zhang P, et al. Research progress of ERF transcription factors in regulating biological stress responses[J]. Biotechnol Bull, 2021, 37(3):136-143. | |
[21] |
Giraudat J, Hauge BM, Valon C, et al. Isolation of the Arabidopsis ABI3 gene by positional cloning[J]. Plant Cell, 1992, 4(10):1251-1261.
pmid: 1359917 |
[22] |
Riechmann JL, Heard J, Martin G, et al. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290(5499):2105-2110.
pmid: 11118137 |
[23] |
Sakuma Y, Liu Q, Dubouzet JG, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression[J]. Biochem Biophys Res Commun, 2002, 290(3):998-1009.
doi: 10.1006/bbrc.2001.6299 URL |
[24] |
Nakano T, Suzuki K, Fujimura T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiol, 2006, 140(2):411-432.
pmid: 16407444 |
[25] |
Zhang J, Liao JY, Ling QQ, et al. Genome-wide identification and expression profiling analysis of maize AP2/ERF superfamily genes reveal essential roles in abiotic stress tolerance[J]. BMC Genomics, 2022, 23(1):125.
doi: 10.1186/s12864-022-08345-7 pmid: 35151253 |
[26] | Rashid M, He GY, Yang GX, et al. AP2/ERF transcription factor in rice:genome-wide canvas and syntenic relationships between monocots and eudicots[J]. Evol Bioinform Online, 2012, 8:321-355. |
[27] |
Zhao Y, Ma RY, Xu DL, et al. Genome-wide identification and analysis of the AP2 transcription factor gene family in wheat(Triticum aestivum L.)[J]. Front Plant Sci, 2019, 10:1286.
doi: 10.3389/fpls.2019.01286 pmid: 31681381 |
[28] |
Zhang GY, Chen M, Chen XP, et al. Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean(Glycine max L.)[J]. J Exp Bot, 2008, 59(15):4095-4107.
doi: 10.1093/jxb/ern248 URL |
[29] |
Li MY, Xu ZS, Huang Y, et al. Genome-wide analysis of AP2/ERF transcription factors in carrot(Daucus carota L.)reveals evolution and expression profiles under abiotic stress[J]. Mol Genet Genomics, 2015, 290(6):2049-2061.
doi: 10.1007/s00438-015-1061-3 URL |
[30] |
Thamilarasan SK, Park JI, Jung HJ, et al. Genome-wide analysis of the distribution of AP2/ERF transcription factors reveals duplication and CBFs genes elucidate their potential function in Brassica oleracea[J]. BMC Genomics, 2014, 15:422.
doi: 10.1186/1471-2164-15-422 pmid: 24888752 |
[31] |
Zhang HN, Pan XL, Liu SH, et al. Genome-wide analysis of AP2/ERF transcription factors in pineapple reveals functional divergence during flowering induction mediated by ethylene and floral organ development[J]. Genomics, 2021, 113(2):474-489.
doi: 10.1016/j.ygeno.2020.10.040 pmid: 33359830 |
[32] |
Gao Y, Han D, Jia W, et al. Molecular characterization and systematic analysis of NtAP2/ERF in tobacco and functional determination of NtRAV-4 under drought stress[J]. Plant Physiol Biochem, 2020, 156:420-435.
doi: 10.1016/j.plaphy.2020.09.027 URL |
[33] |
Li W, Geng ZW, Zhang CP, et al. Whole-genome characterization of Rosa chinensis AP2/ERF transcription factors and analysis of negative regulator RcDREB2B in Arabidopsis[J]. BMC Genomics, 2021, 22(1):90.
doi: 10.1186/s12864-021-07396-6 pmid: 33509074 |
[34] |
Ghorbani R, Zakipour Z, Alemzadeh A, et al. Genome-wide analysis of AP2/ERF transcription factors family in Brassica napus[J]. Physiol Mol Biol Plants, 2020, 26(7):1463-1476.
doi: 10.1007/s12298-020-00832-z URL |
[35] |
Dietz KJ, Vogel MO, Viehhauser A. AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling[J]. Protoplasma, 2010, 245(1/2/3/4):3-14.
doi: 10.1007/s00709-010-0142-8 URL |
[36] |
Lata CR, Mishra AK, Muthamilarasan M, et al. Genome-wide investigation and expression profiling of AP2/ERF transcription factor superfamily in foxtail millet(Setaria italica L.)[J]. PLoS One, 2014, 9(11):e113092.
doi: 10.1371/journal.pone.0113092 URL |
[37] |
Jin JH, Wang M, Zhang HX, et al. Genome-wide identification of the AP2/ERF transcription factor family in pepper(Capsicum annuum L.)[J]. Genome, 2018, 61(9):663-674.
doi: 10.1139/gen-2018-0036 URL |
[38] |
Ito TM, Polido PB, Rampim MC, et al. Genome-wide identification and phylogenetic analysis of the AP2/ERF gene superfamily in sweet orange(Citrus sinensis)[J]. Genet Mol Res, 2014, 13(3):7839-7851.
doi: 10.4238/2014.September.26.22 pmid: 25299098 |
[39] |
Liu CX, Zhang TZ. Expansion and stress responses of the AP2/EREBP superfamily in cotton[J]. BMC Genomics, 2017, 18(1):118.
doi: 10.1186/s12864-017-3517-9 pmid: 28143399 |
[40] |
Li DL, He YJ, Li SH, et al. Genome-wide characterization and expression analysis of AP2/ERF genes in eggplant(Solanum melongena L.)[J]. Plant Physiol Biochem, 2021, 167:492-503.
doi: 10.1016/j.plaphy.2021.08.006 URL |
[41] |
Cao DD, Lin ZY, Huang LY, et al. Genome-wide analysis of AP2/ERF superfamily in Lotus(Nelumbo nucifera)and the association between NnADAP and rhizome morphology[J]. BMC Genomics, 2021, 22(1):171.
doi: 10.1186/s12864-021-07473-w URL |
[42] |
Zhang J, Shi SZ, Jiang YN, et al. Genome-wide investigation of the AP2/ERF superfamily and their expression under salt stress in Chinese willow(Salix matsudana)[J]. PeerJ, 2021, 9:e11076.
doi: 10.7717/peerj.11076 URL |
[43] |
Zhou LX, Yarra R. Genome-wide identification and characterization of AP2/ERF transcription factor family genes in oil palm under abiotic stress conditions[J]. Int J Mol Sci, 2021, 22(6):2821.
doi: 10.3390/ijms22062821 URL |
[44] |
Kitomi Y, Ito H, Hobo T, et al. The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type-A response regulator of cytokinin signaling[J]. Plant J, 2011, 67(3):472-484.
doi: 10.1111/j.1365-313X.2011.04610.x URL |
[45] |
Zhao Y, Cheng SF, Song YL, et al. The interaction between rice ERF3 and WOX11 promotes crown root development by regulating gene expression involved in cytokinin signaling[J]. Plant Cell, 2015, 27(9):2469-2483.
doi: 10.1105/tpc.15.00227 URL |
[46] |
Lee DK, Yoon S, Kim YS, et al. Rice OsERF71-mediated root modification affects shoot drought tolerance[J]. Plant Signal Behav, 2017, 12(1):e1268311.
doi: 10.1080/15592324.2016.1268311 URL |
[47] |
Neogy A, Garg T, Kumar A, et al. Genome-wide transcript profiling reveals an auxin-responsive transcription factor, OsAP2/ERF-40, promoting rice adventitious root development[J]. Plant Cell Physiol, 2019, 60(10):2343-2355.
doi: 10.1093/pcp/pcz132 pmid: 31318417 |
[48] |
Trupiano D, Yordanov Y, Regan S, et al. Identification, characterization of an AP2/ERF transcription factor that promotes adventitious, lateral root formation in Populus[J]. Planta, 2013, 238(2):271-282.
doi: 10.1007/s00425-013-1890-4 pmid: 23645259 |
[49] |
Nie J, Wen C, Xi L, et al. The AP2/ERF transcription factor CmERF053 of chrysanthemum positively regulates shoot branching, lateral root, and drought tolerance[J]. Plant Cell Rep, 2018, 37(7):1049-1060.
doi: 10.1007/s00299-018-2290-9 pmid: 29687169 |
[50] |
Ye BB, Shang GD, Pan Y, et al. AP2/ERF transcription factors integrate age and wound signals for root regeneration[J]. Plant Cell, 2020, 32(1):226-241.
doi: 10.1105/tpc.19.00378 URL |
[51] |
Chen YB, Wu PZ, Zhao QQ, et al. Overexpression of a phosphate starvation response AP2/ERF gene from physic nut in Arabidopsis alters root morphological traits and phosphate starvation-induced anthocyanin accumulation[J]. Front Plant Sci, 2018, 9:1186.
doi: 10.3389/fpls.2018.01186 pmid: 30177937 |
[52] |
Cai XT, Xu P, Zhao PX, et al. Arabidopsis ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation[J]. Nat Commun, 2014, 5:5833.
doi: 10.1038/ncomms6833 URL |
[53] |
Lv BS, Wei KJ, Hu KQ, et al. MPK14-mediated auxin signaling controls lateral root development via ERF13-regulated very-long-chain fatty acid biosynthesis[J]. Mol Plant, 2021, 14(2):285-297.
doi: 10.1016/j.molp.2020.11.011 pmid: 33221411 |
[54] |
Hirota A, Kato T, Fukaki H, et al. The auxin-regulated AP2/EREBP gene PUCHI is required for morphogenesis in the early lateral root primordium of Arabidopsis[J]. Plant Cell, 2007, 19(7):2156-2168.
pmid: 17630277 |
[55] | 田特. 拟南芥AP2/ERF转录因子ERFⅡ-1和ERFⅡ-2调控植物侧根生长发育的研究[D]. 济南: 山东大学, 2019. |
Tian T. AP2/ERF transcription factors ERFⅡ-1 and ERFⅡ-2 of Arabidopsis regulate plant lateral roots growth and development[D]. Jinan: Shandong University, 2019. | |
[56] |
Bian XF, Kim HS, Kwak SS, et al. Different functions of IbRAP2. 4, a drought-responsive AP2/ERF transcription factor, in regulating root development between Arabidopsis and sweetpotato[J]. Front Plant Sci, 2022, 13:820450.
doi: 10.3389/fpls.2022.820450 URL |
[57] |
Kunst L, Klenz JE, Martinez-Zapater J, et al. AP2 gene determines the identity of perianth organs in flowers of Arabidopsis thaliana[J]. Plant Cell, 1989, 1(12):1195-1208.
doi: 10.2307/3868917 URL |
[58] |
Zhang YF, Huang SH, Wang XF, et al. Defective APETALA2 genes lead to sepal modification in Brassica crops[J]. Front Plant Sci, 2018, 9:367.
doi: 10.3389/fpls.2018.00367 URL |
[59] |
Lai PH, Huang LM, Pan ZJ, et al. PeERF1, a SHINE-like transcription factor, is involved in nanoridge development on lip epidermis of Phalaenopsis flowers[J]. Front Plant Sci, 2020, 10:1709.
doi: 10.3389/fpls.2019.01709 URL |
[60] |
Ma ZM, Wu T, Huang K, et al. A novel AP2/ERF transcription factor, OsRPH1, negatively regulates plant height in rice[J]. Front Plant Sci, 2020, 11:709.
doi: 10.3389/fpls.2020.00709 pmid: 32528516 |
[61] | 杜琳. 水稻株高相关AP2家族转录因子OsRPH2的功能研究[D]. 长春: 吉林大学, 2021. |
Du L. Study on the function of rice plant height-related AP2 family transcription factor OsRPH2[D]. Changchun: Jilin University, 2021. | |
[62] |
Marsch-Martinez N, Greco R, Becker JD, et al. BOLITA, an Arabidopsis AP2/ERF-like transcription factor that affects cell expansion and proliferation/differentiation pathways[J]. Plant Mol Biol, 2006, 62(6):825-843.
pmid: 17096212 |
[63] |
Chuck G, Meeley R, Hake S. Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1[J]. Development, 2008, 135(18):3013-3019.
doi: 10.1242/dev.024273 pmid: 18701544 |
[64] |
Mantiri FR, Kurdyukov S, Lohar DP, et al. The transcription factor MtSERF1 of the ERF subfamily identified by transcriptional profiling is required for somatic embryogenesis induced by auxin plus cytokinin in Medicago truncatula[J]. Plant Physiol, 2008, 146(4):1622-1636.
doi: 10.1104/pp.107.110379 pmid: 18235037 |
[65] |
Xu SJ, Hou HZ, Wu Z, et al. Chrysanthemum embryo development is negatively affected by a novel ERF transcription factor, CmERF12[J]. J Exp Bot, 2022, 73(1):197-212.
doi: 10.1093/jxb/erab398 URL |
[66] |
Castillejo C, Pelaz S. The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering[J]. Curr Biol, 2008, 18(17):1338-1343.
doi: 10.1016/j.cub.2008.07.075 pmid: 18718758 |
[67] |
Wang XB, Pan L, Wang Y, et al. PpIAA1 and PpERF4 form a positive feedback loop to regulate peach fruit ripening by integrating auxin and ethylene signals[J]. Plant Sci, 2021, 313:111084.
doi: 10.1016/j.plantsci.2021.111084 URL |
[68] |
Zhang ZJ, Zhang HW, Quan RD, et al. Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco[J]. Plant Physiol, 2009, 150(1):365-377.
doi: 10.1104/pp.109.135830 pmid: 19261734 |
[69] |
Ohto MA, Fischer RL, Goldberg RB, et al. Control of seed mass by APETALA2[J]. Proc Natl Acad Sci USA, 2005, 102(8):3123-3128.
doi: 10.1073/pnas.0409858102 URL |
[70] |
Luo C, Wang SL, Ning K, et al. The APETALA2 transcription factor LsAP2 regulates seed shape in lettuce[J]. J Exp Bot, 2021, 72(7):2463-2476.
doi: 10.1093/jxb/eraa592 pmid: 33340036 |
[71] |
Zumajo-Cardona C, Pabón-Mora N, Ambrose BA. The evolution of euAPETALA2 genes in vascular plants:from plesiomorphic roles in sporangia to acquired functions in ovules and fruits[J]. Mol Biol Evol, 2021, 38(6):2319-2336.
doi: 10.1093/molbev/msab027 pmid: 33528546 |
[72] |
Xu L, Feng GY, Yang ZF, et al. Genome-wide AP2/ERF gene family analysis reveals the classification, structure, expression profiles and potential function in orchardgrass(Dactylis glomerata)[J]. Mol Biol Rep, 2020, 47(7):5225-5241.
doi: 10.1007/s11033-020-05598-x URL |
[73] |
Jing DL, Chen WW, Hu RQ, et al. An integrative analysis of transcriptome, proteome and hormones reveals key differentially expressed genes and metabolic pathways involved in flower development in loquat[J]. Int J Mol Sci, 2020, 21(14):5107.
doi: 10.3390/ijms21145107 URL |
[74] |
Hong YB, Wang H, Gao YZ, et al. ERF transcription factor OsBIERF3 positively contributes to immunity against fungal and bacterial diseases but negatively regulates cold tolerance in rice[J]. Int J Mol Sci, 2022, 23(2):606.
doi: 10.3390/ijms23020606 URL |
[75] |
Zang ZY, Lv Y, Liu S, et al. A novel ERF transcription factor, ZmERF105, positively regulates maize resistance to Exserohilum turcicum[J]. Front Plant Sci, 2020, 11:850.
doi: 10.3389/fpls.2020.00850 URL |
[76] |
Hawku MD, Goher F, Islam MA, et al. TaAP2-15, an AP2/ERF transcription factor, is positively involved in wheat resistance to Puccinia striiformis f. sp. tritici[J]. Int J Mol Sci, 2021, 22(4):2080.
doi: 10.3390/ijms22042080 URL |
[77] |
Zlobin N, Lebedeva M, Monakhova Y, et al. An ERF 121 transcription factor from Brassica oleracea is a target for the conserved TAL-effectors from different Xanthomonas campestris pv. campestris strains[J]. Mol Plant Pathol, 2021, 22(5):618-624.
doi: 10.1111/mpp.13048 URL |
[78] |
Li DD, Liu XT, Shu LZ, et al. Global analysis of the AP2/ERF gene family in rose(Rosa chinensis)genome unveils the role of RcERF099 in Botrytis resistance[J]. BMC Plant Biol, 2020, 20(1):533.
doi: 10.1186/s12870-020-02740-6 URL |
[79] | 陈忠良. 玉米转录因子EREB58在虫害应答中的功能分析[D]. 北京: 中国农业科学院, 2016. |
Chen ZL. Functional analysis of transcription factor EREB58 in response to herbivore in Zea mays[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. | |
[80] |
Giri MK, Swain S, Gautam JK, et al. The Arabidopsis thaliana At4g13040 gene, a unique member of the AP2/EREBP family, is a positive regulator for salicylic acid accumulation and basal defense against bacterial pathogens[J]. J Plant Physiol, 2014, 171(10):860-867.
doi: 10.1016/j.jplph.2013.12.015 URL |
[81] |
Gautam JK, Nandi AK. APD1, the unique member of Arabidopsis AP2 family influences systemic acquired resistance and ethylene-jasmonic acid signaling[J]. Plant Physiol Biochem, 2018, 133:92-99.
doi: 10.1016/j.plaphy.2018.10.026 URL |
[82] |
Xie ZL, Nolan TM, Jiang H, et al. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis[J]. Front Plant Sci, 2019, 10:228.
doi: 10.3389/fpls.2019.00228 pmid: 30873200 |
[83] |
Yu F, Liang K, Fang T, et al. A group VII ethylene response factor gene, ZmEREB180, coordinates waterlogging tolerance in maize seedlings[J]. Plant Biotechnol J, 2019, 17(12):2286-2298.
doi: 10.1111/pbi.13140 pmid: 31033158 |
[84] |
Fukao T, Xu KN, Ronald PC, et al. A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice[J]. Plant Cell, 2006, 18(8):2021-2034.
pmid: 16816135 |
[85] |
Hattori Y, Nagai K, Furukawa S, et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water[J]. Nature, 2009, 460(7258):1026-1030.
doi: 10.1038/nature08258 URL |
[86] | 王丽娟, 王毅, 陆斌, 等. 油橄榄AP2/ERF转录因子鉴定及水胁迫表达分析[J]. 广西植物, 2021. |
Wang LJ, Wang Y, Lu B, et al. Identification and expression analysis of AP2/ERF transcription factor under water stress in Olea europaea[J]. Guihaia, 2021. | |
[87] |
Liu K, Yang Q, Yang TR, et al. Transcriptome-based identification and expression profiling of AP2/ERF members in Caragana intermedia and functional analysis of CiDREB3[J]. Mol Biol Rep, 2021, 48(12):7953-7965.
doi: 10.1007/s11033-021-06826-8 pmid: 34677713 |
[88] |
Xie ZL, Nolan T, Jiang H, et al. The AP2/ERF transcription factor TINY modulates brassinosteroid-regulated plant growth and drought responses in Arabidopsis[J]. Plant Cell, 2019, 31(8):1788-1806.
doi: 10.1105/tpc.18.00918 URL |
[89] |
Jung SE, Bang SW, Kim SH, et al. Overexpression of OsERF83, a vascular tissue-specific transcription factor gene, confers drought tolerance in rice[J]. Int J Mol Sci, 2021, 22(14):7656.
doi: 10.3390/ijms22147656 URL |
[90] |
Wang ZY, Zhao X, Ren ZZ, et al. ZmERF21 directly regulates hormone signaling and stress-responsive gene expression to influence drought tolerance in maize seedlings[J]. Plant Cell Environ, 2022, 45(2):312-328.
doi: 10.1111/pce.14243 URL |
[91] |
Yu Y, Yu M, Zhang SX, et al. Transcriptomic identification of wheat AP2/ERF transcription factors and functional characterization of TaERF-6-3A in response to drought and salinity stresses[J]. Int J Mol Sci, 2022, 23(6):3272.
doi: 10.3390/ijms23063272 URL |
[92] |
Jin Y, Pan WY, Zheng XF, et al. OsERF101, an ERF family transcription factor, regulates drought stress response in reproductive tissues[J]. Plant Mol Biol, 2018, 98(1/2):51-65.
doi: 10.1007/s11103-018-0762-5 URL |
[93] |
Qin F, Kakimoto M, Sakuma Y, et al. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L[J]. Plant J, 2007, 50(1):54-69.
pmid: 17346263 |
[94] |
Quan RD, Hu SJ, Zhang ZL, et al. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance[J]. Plant Biotechnol J, 2010, 8(4):476-488.
doi: 10.1111/j.1467-7652.2009.00492.x pmid: 20233336 |
[95] |
Xu ZS, Xia LQ, Chen M, et al. Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1(TaERF1)that increases multiple stress tolerance[J]. Plant Mol Biol, 2007, 65(6):719-732.
doi: 10.1007/s11103-007-9237-9 URL |
[96] |
Yang SU, Kim H, Kim RJ, et al. AP2/DREB transcription factor RAP2. 4 activates cuticular wax biosynthesis in Arabidopsis leaves under drought[J]. Front Plant Sci, 2020, 11:895.
doi: 10.3389/fpls.2020.00895 pmid: 32719695 |
[97] |
Zhang Y, Ming RH, Khan M, et al. ERF 9 of Poncirus trifoliata(L.)Raf. undergoes feedback regulation by ethylene and modulates cold tolerance via regulating a glutathione S-transferase U17 gene[J]. Plant Biotechnol J, 2022, 20(1):183-200.
doi: 10.1111/pbi.13705 URL |
[98] |
Yin FL, Zeng YL, Ji JY, et al. The halophyte Halostachys caspica AP2/ERF transcription factor HcTOE3 positively regulates freezing tolerance in Arabidopsis[J]. Front Plant Sci, 2021, 12:638788.
doi: 10.3389/fpls.2021.638788 URL |
[99] |
Ahmed S, Rashid MAR, Zafar SA, et al. Genome-wide investigation and expression analysis of APETALA-2 transcription factor subfamily reveals its evolution, expansion and regulatory role in abiotic stress responses in Indica Rice(Oryza sativa L. ssp. indica)[J]. Genomics, 2021, 113(<W>1 Pt 2):1029-1043.
doi: 10.1016/j.ygeno.2020.10.037 URL |
[100] |
Park SI, Kwon HJ, Cho MH, et al. The OsERF115/AP2EREBP110 transcription factor is involved in the multiple stress tolerance to heat and drought in rice plants[J]. Int J Mol Sci, 2021, 22(13):7181.
doi: 10.3390/ijms22137181 URL |
[101] | 高升华, 李宁, 王飞, 等. 辣椒AP2/ERF家族转录因子CaERF109的克隆和表达分析[J]. 分子植物育种, 2019, 17(19):6256-6262. |
Gao SH, Li N, Wang F, et al. Cloning and expression analysis of AP2/ERF transcription factor gene CaERF109 in pepper[J]. Mol Plant Breed, 2019, 17(19):6256-6262. | |
[102] | 王平荣, 邓晓建, 高晓玲, 等. DREB转录因子研究进展[J]. 遗传, 2006, 28(3):369-374. |
Wang PR, Deng XJ, Gao XL, et al. Progress in the study on DREB transcription factor[J]. Hereditas, 2006, 28(3):369-374. | |
[103] |
Agarwal PK, Agarwal P, Reddy MK, et al. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants[J]. Plant Cell Rep, 2006, 25(12):1263-1274.
pmid: 16858552 |
[104] |
Du XP, Li WY, Sheng LP, et al. Over-expression of chrysanthemum CmDREB6 enhanced tolerance of chrysanthemum to heat stress[J]. BMC Plant Biol, 2018, 18(1):178.
doi: 10.1186/s12870-018-1400-8 pmid: 30180804 |
[105] |
Chen JQ, Dong Y, Wang YJ, et al. An AP2/EREBP-type transcription-factor gene from rice is cold-inducible and encodes a nuclear-localized protein[J]. Theor Appl Genet, 2003, 107(6):972-979.
doi: 10.1007/s00122-003-1346-5 URL |
[106] | 杨雪. 水稻AP2/EREBP型转录因子OsSub1C在低温胁迫中的功能研究[D]. 长春: 吉林大学, 2019. |
Yang X.Functional analysis of AP2/EREBP transcription factor OsSub1C in rice(Oryza sativa L.)under low temperature stress[D]. Changchun: Jilin University, 2019. | |
[107] |
Feng WQ, Li J, Long SX, et al. A DREB1 gene from zoysiagrass enhances Arabidopsis tolerance to temperature stresses without growth inhibition[J]. Plant Sci, 2019, 278:20-31.
doi: S0168-9452(18)30117-1 pmid: 30471726 |
[108] |
Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis[J]. Plant Cell, 1998, 10(8):1391-1406.
pmid: 9707537 |
[109] |
Dubouzet JG, Sakuma Y, Ito Y, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression[J]. Plant J, 2003, 33(4):751-763.
pmid: 12609047 |
[110] |
Şahin-Çevik M, Moore GA. Two AP2 domain containing genes isolated from the cold-hardy citrus relative Poncirus trifoliata are induced in response to cold[J]. Funct Plant Biol, 2006, 33(9):863-875.
doi: 10.1071/FP06005 pmid: 32689297 |
[111] |
Feng K, Hou XL, Xing GM, et al. Advances in AP2/ERF super-family transcription factors in plant[J]. Crit Rev Biotechnol, 2020, 40(6):750-776.
doi: 10.1080/07388551.2020.1768509 pmid: 32522044 |
[112] |
Lu LL, Qanmber G, Li J, et al. Identification and characterization of the ERF subfamily B3 group revealed GhERF13. 12 improves salt tolerance in upland cotton[J]. Front Plant Sci, 2021, 12:705883.
doi: 10.3389/fpls.2021.705883 URL |
[113] | Wang CM, Wang HW, Zhang JS, et al. A seed-specific AP2-domain transcription factor from soybean plays a certain role in regulation of seed germination[J]. Sci China C Life Sci, 2008, 51(4):336-345. |
[114] |
Tang MJ, Sun JW, Liu Y, et al. Isolation and functional characterization of the JcERF gene, a putative AP2/EREBP domain-containing transcription factor, in the woody oil plant Jatropha curcas[J]. Plant Mol Biol, 2007, 63(3):419-428.
pmid: 17103014 |
[115] |
Peng XJ, Ma XY, Fan WH, et al. Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis[J]. Plant Cell Rep, 2011, 30(8):1493-1502.
doi: 10.1007/s00299-011-1058-2 pmid: 21509473 |
[116] |
Zhang GY, Chen M, Li LC, et al. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco[J]. J Exp Bot, 2009, 60(13):3781-3796.
doi: 10.1093/jxb/erp214 pmid: 19602544 |
[117] |
Zhang GY, Chen M, Chen XP, et al. Isolation and characterization of a novel EAR-motif-containing gene GmERF4 from soybean(Glycine max L.)[J]. Mol Biol Rep, 2010, 37(2):809-818.
doi: 10.1007/s11033-009-9616-1 URL |
[118] |
Zhai Y, Wang Y, Li YJ, et al. Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco[J]. Gene, 2013, 513(1):174-183.
doi: 10.1016/j.gene.2012.10.018 pmid: 23111158 |
[119] |
Chen K, Tang WS, Zhou YB, et al. AP2/ERF transcription factor GmDREB1 confers drought tolerance in transgenic soybean by interacting with GmERFs[J]. Plant Physiol Biochem, 2022, 170:287-295.
doi: 10.1016/j.plaphy.2021.12.014 URL |
[120] |
Qu YJ, Nong QD, Jian SG, et al. An AP2/ERF gene, HuERF1, from pitaya(Hylocereus undatus)positively regulates salt tolerance[J]. Int J Mol Sci, 2020, 21(13):4586.
doi: 10.3390/ijms21134586 URL |
[121] |
Schmidt R, Mieulet D, Hubberten HM, et al. Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice[J]. Plant Cell, 2013, 25(6):2115-2131.
doi: 10.1105/tpc.113.113068 URL |
[122] |
Xu ZS, Ni ZY, Li ZY, et al. Isolation and functional characterization of HvDREB1-a gene encoding a dehydration-responsive element binding protein in Hordeum vulgare[J]. J Plant Res, 2009, 122(1):121-130.
doi: 10.1007/s10265-008-0195-3 URL |
[123] |
Li Y, Zhang H, Zhang Q, et al. An AP2/ERF gene, IbRAP2-12, from sweetpotato is involved in salt and drought tolerance in transgenic Arabidopsis[J]. Plant Sci, 2019, 281:19-30.
doi: S0168-9452(18)31132-4 pmid: 30824052 |
[124] | 杨攀攀, 刘丽君, 傅竞也, 等. 玉米逆境响应转录因子ZmEREB102的基因克隆及功能鉴定[J]. 分子植物育种, 2019, 17(17):5545-5553. |
Yang PP, Liu LJ, Fu JY, et al. Gene cloning and functional characterization of a stress-responsive transcription factor ZmEREB102 in maize[J]. Mol Plant Breed, 2019, 17(17):5545-5553. | |
[125] |
Tang YH, Liu K, Zhang J, et al. JcDREB2, a physic nut AP2/ERF gene, alters plant growth and salinity stress responses in transgenic rice[J]. Front Plant Sci, 2017, 8:306.
doi: 10.3389/fpls.2017.00306 pmid: 28321231 |
[126] |
Tang YH, Qin SS, Guo YL, et al. Genome-wide analysis of the AP2/ERF gene family in physic nut and overexpression of the JcERF011 gene in rice increased its sensitivity to salinity stress[J]. PLoS One, 2016, 11(3):e0150879.
doi: 10.1371/journal.pone.0150879 URL |
[127] |
Sun ZM, Zhou ML, Xiao XG, et al. Genome-wide analysis of AP2/ERF family genes from Lotus corniculatus shows LcERF054 enhances salt tolerance[J]. Funct Integr Genomics, 2014, 14(3):453-466.
doi: 10.1007/s10142-014-0372-5 URL |
[128] | 王敏. 甜橙CsERF36和CsERF43的基因克隆与功能初步分析[D]. 重庆: 西南大学, 2021. |
Wang M. Gene cloning and primary functional analysis of CsERF36 and CsERF43 in Citrus sinensis osbeck[D]. Chongqing: Southwest University, 2021. | |
[129] |
Hinz M, Wilson IW, Yang J, et al. Arabidopsis RAP2. 2:an ethylene response transcription factor that is important for hypoxia survival[J]. Plant Physiol, 2010, 153(2):757-772.
doi: 10.1104/pp.110.155077 URL |
[130] |
Licausi F, van Dongen JT, Giuntoli B, et al. HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana[J]. Plant J, 2010, 62(2):302-315.
doi: 10.1111/j.1365-313X.2010.04149.x URL |
[131] | 吕海舟. AP2/ERF转录因子调控丹参活性成分生物合成的功能研究[D]. 北京: 北京协和医学院, 2017. |
Lv HZ. Functional identification of AP2/ERF transcription factor involved in the regulation of bioactive compound biosynthesis in Salvia miltiorrhiza[D]. Beijing: Peking Union Medical College, 2017. | |
[132] |
Yu WC, Yu Y, Wang C, et al. Mechanism by which salt stress induces physiological responses and regulates tanshinone synthesis[J]. Plant Physiol Biochem, 2021, 164:10-20.
doi: 10.1016/j.plaphy.2021.04.011 URL |
[133] |
Zheng H, Jing L, Jiang XH, et al. The ERF-VII transcription factor SmERF73 coordinately regulates tanshinone biosynthesis in response to stress elicitors in Salvia miltiorrhiza[J]. New Phytol, 2021, 231(5):1940-1955.
doi: 10.1111/nph.17463 pmid: 33983629 |
[134] |
Zhang YY, Yin XR, Xiao YW, et al. An ethylene response factor-myb transcription complex regulates furaneol biosynthesis by activating quinone oxidoreductase expression in strawberry[J]. Plant Physiol, 2018, 178(1):189-201.
doi: 10.1104/pp.18.00598 URL |
[135] |
Pan QF, Wang CY, Xiong ZW, et al. CrERF5, an AP2/ERF transcription factor, positively regulates the biosynthesis of bisindole alkaloids and their precursors in Catharanthus roseus[J]. Front Plant Sci, 2019, 10:931.
doi: 10.3389/fpls.2019.00931 pmid: 31379908 |
[136] |
Xu SQ, Yao SC, Huang RS, et al. Transcriptome-wide analysis of the AP2/ERF transcription factor gene family involved in the regulation of gypenoside biosynthesis in Gynostemma pentaphyllum[J]. Plant Physiol Biochem, 2020, 154:238-247.
doi: 10.1016/j.plaphy.2020.05.040 URL |
[137] |
Lin TW, Du JF, Zheng XY, et al. Comparative transcriptome analysis of MeJA-responsive AP2/ERF transcription factors involved in notoginsenosides biosynthesis[J]. 3 Biotech, 2020, 10(7):290.
doi: 10.1007/s13205-020-02246-w pmid: 32550109 |
[1] | HUANG Xiao-long, SUN Gui-lian, MA Dan-dan, YAN Hui-qing. Construction of Yeast One-hybrid Library and Screening of Factors Regulating LAZY1 Expression in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 126-135. |
[2] | HAN Hao-zhang, ZHANG Li-hua, LI Su-hua, ZHAO Rong, WANG Fang, WANG Xiao-li. Construction of cDNA Library of Cinnamomun bodinieri Induced by Saline-alkali Stress and Screening of CbP5CS Upstream Regulators [J]. Biotechnology Bulletin, 2023, 39(9): 236-245. |
[3] | DING Li, DU Ting-ting, TANG Qiong-ying, GAO Quan-xin, YI Shao-kui, YANG Guo-liang. Analyses of Endocrine Regulation and Expression of Genes Related to the Molting Signaling Pathway in the Molting Cycle of Macrobrachium rosenbergii [J]. Biotechnology Bulletin, 2023, 39(9): 300-310. |
[4] | LYU Qiu-yu, SUN Pei-yuan, RAN Bin, WANG Jia-rui, CHEN Qing-fu, LI Hong-you. Cloning, Subcellular Localization and Expression Analysis of the Transcription Factor Gene FtbHLH3 in Fagopyrum tataricum [J]. Biotechnology Bulletin, 2023, 39(8): 194-203. |
[5] | XU Jing, ZHU Hong-lin, LIN Yan-hui, TANG Li-qiong, TANG Qing-jie, WANG Xiao-ning. Cloning of IbHQT1 Promoter and Identification of Upstream Regulatory Factors in Sweet Potato [J]. Biotechnology Bulletin, 2023, 39(8): 213-219. |
[6] | LIU Bao-cai, CHEN Jing-ying, ZHANG Wu-jun, HUANG Ying-zhen, ZHAO Yun-qing, LIU Jian-chao, WEI Zhi-cheng. Characteristics Analysis of Seed Microrhizome Gene Expression of Polygonatum cyrtonema [J]. Biotechnology Bulletin, 2023, 39(8): 220-233. |
[7] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[8] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[9] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[10] | HU Hai-lin, XU Li, LI Xiao-xu, WANG Chen-can, MEI Man, DING Wen-jing, ZHAO Yuan-yuan. Advances in the Regulation of Plant Growth, Development and Stress Physiology by Small Peptide Hormones [J]. Biotechnology Bulletin, 2023, 39(7): 13-25. |
[11] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[12] | GUO Yi-ting, ZHAO Wen-ju, REN Yan-jing, ZHAO Meng-liang. Identification and Analysis of NAC Transcription Factor Family Genes in Helianthus tuberosus L. [J]. Biotechnology Bulletin, 2023, 39(6): 217-232. |
[13] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[14] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[15] | WANG Bing, ZHAO Hui-na, YU Jing, YU Shi-zhou, LEI Bo. Research Progress in the Regulation of Plant Branch Development [J]. Biotechnology Bulletin, 2023, 39(5): 14-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||