Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (1): 332-343.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0492
Previous Articles Next Articles
ZHANG Jin-wei1,2,3(), WU Yuan-xia1,4, SUN Jing1,2,3, LI Xiao-kai1,3,5, LU Lu5, LI Zhou-quan4, GE Liang-peng1,2,3()
Received:
2023-05-21
Online:
2024-01-26
Published:
2024-02-06
Contact:
GE Liang-peng
E-mail:jinweizhang50@163.com;geliangpeng1982@163.com
ZHANG Jin-wei, WU Yuan-xia, SUN Jing, LI Xiao-kai, LU Lu, LI Zhou-quan, GE Liang-peng. Effects of Commensal Microbiota on Intestinal Development, Metabolism, and Mitochondrial Function in Piglets[J]. Biotechnology Bulletin, 2024, 40(1): 332-343.
目的基因 Target gene | 引物序列Primer sequence(5'-3') | 登录号Accession No. | 产物长度Product length/bp |
---|---|---|---|
p53 | Forward: ATTTCACCCTCCAGATCCGTG | NM_213824.3 | 153 |
Reverse: AGGGAGACTGCCCCTTCTTA | |||
PIG3 | Forward: GCGGACTTACTCCAGAGACAA | XM_003125363.6 | 194 |
Reverse: AGGAACCCTTCAGGGACAGT | |||
Cyt C | Forward: GCCAACAAGAACAAAGGCATC | NM_001129970.1 | 113 |
Reverse: CTCCCTTCTTCTTAATGCCAGC | |||
Apaf-1 | Forward: TACCCTGTTGGCGACTGGAGATG | XM_021093026.1 | 87 |
Reverse: ACTGGAGCACACGAATGAAGAAGC | |||
NRF1 | Forward: GCCAGTGAGATGAAGAGAAACG | AK393002.1 | 166 |
Reverse: CTACAGCAGGGACCAAAGTTCAC | |||
TFAM | Forward: GCTCTCCGTTCAGTTTTGCG | NM_001130211.1 | 187 |
Reverse: GGAAGTTCCCTCCACAGCTC | |||
PGC-1α | Forward: TGGACTGACATCGAGTGTGCT | NM_213963.2 | 127 |
Reverse: TGAGTCCACCCAGAAAGCTG | |||
HO-1 | Forward: TCCTGCTCAACATTCAGCTGTT | NM_001004027.1 | 135 |
Reverse: TTGTCACGGGAGTGGAGTCT | |||
CPT-1a | Forward: CAAGATGGGCATGAACGCTG | NM_001129805.1 | 145 |
Reverse: TGGAATGTTGGGGTTGGTGT | |||
ACC1 | Forward: CTGGAGGTGTATGTGCGAAG | XM_021066238.1 | 177 |
Reverse: GTGGTTGAGGTTGGAGGAGA | |||
GAPDH | Forward: ACATGGCCTCCAAGGAGTAAGA | NM_001206359.1 | 106 |
Reverse: GATCGAGTTGGGGCTGTGACT |
Table 1 Primer sequences used for RT-qPCR
目的基因 Target gene | 引物序列Primer sequence(5'-3') | 登录号Accession No. | 产物长度Product length/bp |
---|---|---|---|
p53 | Forward: ATTTCACCCTCCAGATCCGTG | NM_213824.3 | 153 |
Reverse: AGGGAGACTGCCCCTTCTTA | |||
PIG3 | Forward: GCGGACTTACTCCAGAGACAA | XM_003125363.6 | 194 |
Reverse: AGGAACCCTTCAGGGACAGT | |||
Cyt C | Forward: GCCAACAAGAACAAAGGCATC | NM_001129970.1 | 113 |
Reverse: CTCCCTTCTTCTTAATGCCAGC | |||
Apaf-1 | Forward: TACCCTGTTGGCGACTGGAGATG | XM_021093026.1 | 87 |
Reverse: ACTGGAGCACACGAATGAAGAAGC | |||
NRF1 | Forward: GCCAGTGAGATGAAGAGAAACG | AK393002.1 | 166 |
Reverse: CTACAGCAGGGACCAAAGTTCAC | |||
TFAM | Forward: GCTCTCCGTTCAGTTTTGCG | NM_001130211.1 | 187 |
Reverse: GGAAGTTCCCTCCACAGCTC | |||
PGC-1α | Forward: TGGACTGACATCGAGTGTGCT | NM_213963.2 | 127 |
Reverse: TGAGTCCACCCAGAAAGCTG | |||
HO-1 | Forward: TCCTGCTCAACATTCAGCTGTT | NM_001004027.1 | 135 |
Reverse: TTGTCACGGGAGTGGAGTCT | |||
CPT-1a | Forward: CAAGATGGGCATGAACGCTG | NM_001129805.1 | 145 |
Reverse: TGGAATGTTGGGGTTGGTGT | |||
ACC1 | Forward: CTGGAGGTGTATGTGCGAAG | XM_021066238.1 | 177 |
Reverse: GTGGTTGAGGTTGGAGGAGA | |||
GAPDH | Forward: ACATGGCCTCCAAGGAGTAAGA | NM_001206359.1 | 106 |
Reverse: GATCGAGTTGGGGCTGTGACT |
Fig. 1 Effects of commensal microbiota on intestinal villus height, crypt depth, and mucosal thickness A: Ileal villus height; B: ileal crypt depth; C: ileal mucosal thickness; D: colonic villus height; E: colonic crypt depth; F: colonic mucosal thickness. * indicates P < 0.05, ** P < 0.01, and *** P < 0.001. The same below
Fig. 2 Effects of commensal microbiota on the contents of short-chain fatty acids in piglets A: Ileum short-chain fatty acid content; B: colonic short-chain fatty acid content; C: liver short-chain fatty acid content; D: serum short-chain fatty acid content
Fig. 3 Effects of commensal microbiota on the amino acid contents in piglets A-B: Ileum amino acids content; C-D: colonic amino acids content; E-F: liver amino acids content; G-F: serum amino acids content. Ala: alanine; Arg: arginine; Asn: asparagine; Asp: asparticacid; Cys: cysteine; Gln: glutamine; Glu: glutamicacid; Gly: glycine; His: histidine; Ile: isoleucine; Leu: leucine; Lys: lysine; Met: methionine; Phe: phenylalanine; Pro: proline; Ser: serine; Thr: threonine; Trp: tryptophan; Tyr: tyrosine; Val: valine
Fig. 4 Effects of commensal microbiota on the mitochondrial contents in the ileum and colon of piglets Left picture shows mitochondria immunohistochemical staining pictures. A: Ileal mitochondrial content; B: colonic mitochondrial content
Fig. 5 Effects of commensal microbiota on the gene expressions in ileum, colon, and liver A: Gene expression correlation analysis. B: Cluster analysis based on overall gene expression in all samples. C: The common and unique differential mRNA in the liver, ileum, and colon. D-G: Commensal microbiota induced the differential gene expression in liver, ileum, and colon, respectively
Fig. 7 Effect of commensal microbiota on mitochondrial function-related gene expression Red indicates upregulation, blue indicates downregulation, and ★ indicates P<0.05
Fig. 8 Effects of commensal microbiota on the expressions of mitochondrial function-related genes A-C: The expressions of genes related to lipid metabolism, apoptosis, and oxidative stress in liver. D-F: The expression of genes related to lipid metabolism, apoptosis, and oxidative stress in ileal. G-I: The expression of genes related to lipid metabolism, apoptosis and oxidative stress in colon
[1] |
Belkaid Y, Naik S. Compartmentalized and systemic control of tissue immunity by commensals[J]. Nat Immunol, 2013, 14(7): 646-653.
doi: 10.1038/ni.2604 pmid: 23778791 |
[2] |
Rath E, Moschetta A, Haller D. Mitochondrial function - gatekeeper of intestinal epithelial cell homeostasis[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(8): 497-516.
doi: 10.1038/s41575-018-0021-x pmid: 29844587 |
[3] | Gray MW, Burger G, Lang BF. The origin and early evolution of mitochondria[J]. Genome Biol, 2001, 2(6): REVIEWS1018. |
[4] | Franco-Obregón A, Gilbert JA. The microbiome-mitochondrion connection: common ancestries, common mechanisms, common goals[J]. mSystems, 2017, 2(3): e00018-e00017. |
[5] |
Wang ZY, Yang ZH, Liu J, et al. Potential health benefits of whole grains: modulation of mitochondrial biogenesis and energy metabolism[J]. J Agric Food Chem, 2021, 69(47): 14065-14074.
doi: 10.1021/acs.jafc.1c05527 URL |
[6] |
Vezza T, Abad-Jiménez Z, Marti-Cabrera M, et al. Microbiota-mitochondria inter-talk: a potential therapeutic strategy in obesity and type 2 diabetes[J]. Antioxidants, 2020, 9(9): 848.
doi: 10.3390/antiox9090848 URL |
[7] |
Saint-Georges-Chaumet Y, Edeas M. Microbiota-mitochondria inter-talk: consequence for microbiota-host interaction[J]. Pathog Dis, 2016, 74(1): ftv096.
doi: 10.1093/femspd/ftv096 URL |
[8] |
Litvak Y, Byndloss MX, Bäumler AJ. Colonocyte metabolism shapes the gut microbiota[J]. Science, 2018, 362(6418): eaat9076.
doi: 10.1126/science.aat9076 URL |
[9] |
Yardeni T, Tanes CE, Bittinger K, et al. Host mitochondria influence gut microbiome diversity: a role for ROS[J]. Sci Signal, 2019, 12(588): eaaw3159.
doi: 10.1126/scisignal.aaw3159 URL |
[10] |
Duan CY, Kuang L, Xiang XM, et al. Activated Drp1-mediated mitochondrial ROS influence the gut microbiome and intestinal barrier after hemorrhagic shock[J]. Aging, 2020, 12(2): 1397-1416.
doi: 10.18632/aging.v12i2 URL |
[11] |
Clark A, Mach N. The crosstalk between the gut microbiota and mitochondria during exercise[J]. Front Physiol, 2017, 8: 319.
doi: 10.3389/fphys.2017.00319 pmid: 28579962 |
[12] |
Sun J, Zhong H, Du L, et al. Gene expression profiles of germ-free and conventional piglets from the same litter[J]. Sci Rep, 2018, 8(1): 10745.
doi: 10.1038/s41598-018-29093-3 pmid: 30013139 |
[13] | 孙静, 杜蕾, 丁玉春, 等. 无菌猪的制备与微生物质量控制[J]. 中国实验动物学报, 2017, 25(6): 699-702. |
Sun J, Du L, Ding YC, et al. Breeding and microbiological quality control of germ-free pigs[J]. Acta Lab Animalis Sci Sin, 2017, 25(6): 699-702. | |
[14] |
Zhang JW, Shen Y, Yang GT, et al. Commensal microbiota modulates phenotypic characteristics and gene expression in piglet Peyer's patches[J]. Front Physiol, 2023, 14: 1084332.
doi: 10.3389/fphys.2023.1084332 URL |
[15] | 胡杰. 几种物质对早期断奶仔猪生长性能、肠道结构与功能及血液指标的影响[D]. 武汉: 华中农业大学, 2004. |
Hu J. Effects of several substances on growth performance, intestinal structure and function and blood measurements in early weaned piglets[D]. Wuhan: Huazhong Agricultural University, 2004. | |
[16] |
Varghese F, Bukhari AB, Malhotra R, et al. IHC Profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples[J]. PLoS One, 2014, 9(5): e96801.
doi: 10.1371/journal.pone.0096801 URL |
[17] |
Seyed Jafari SM, Hunger RE. IHC optical density score: a new practical method for quantitative immunohistochemistry image analysis[J]. Appl Immunohistochem Mol Morphol, 2017, 25(1): e12-e13.
doi: 10.1097/PAI.0000000000000370 pmid: 27093452 |
[18] |
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2010, 26(1): 139-140.
doi: 10.1093/bioinformatics/btp616 pmid: 19910308 |
[19] |
Zhou YY, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets[J]. Nat Commun, 2019, 10(1): 1523.
doi: 10.1038/s41467-019-09234-6 pmid: 30944313 |
[20] |
Rath S, Sharma R, Gupta R, et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations[J]. Nucleic Acids Res, 2021, 49(D1): D1541-D1547.
doi: 10.1093/nar/gkaa1011 pmid: 33174596 |
[21] | 王恬, 钟翔. 仔猪肠黏膜营养与肠道修复[J]. 饲料工业, 2008, 29(2): 2-7. |
Wang T, Zhong X. Intestines mucous membrane nutrition and intestinal damage and reparation in piglet[J]. Feed Ind, 2008, 29(2): 2-7. | |
[22] |
Yu DF, Zhu WY, Hang SQ. Effects of long-term dietary protein restriction on intestinal morphology, digestive enzymes, gut hormones, and colonic microbiota in pigs[J]. Animals, 2019, 9(4): 180.
doi: 10.3390/ani9040180 URL |
[23] | Roura E, Müller M, Campbell R G, et al. Digestive physiology and nutrition of swine[M]. Sustainable Swine Nutrition. 2022: 1-36. |
[24] |
Du W, Xu H, Mei X, et al. Probiotic Bacillus enhance the intestinal epithelial cell barrier and immune function of piglets[J]. Benef Microbes, 2018, 9(5): 743-754.
doi: 10.3920/BM2017.0142 pmid: 30099892 |
[25] |
Cummings JH, Pomare EW, Branch WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood[J]. Gut, 1987, 28(10): 1221-1227.
doi: 10.1136/gut.28.10.1221 pmid: 3678950 |
[26] |
Morowitz MJ, Carlisle EM, Alverdy JC. Contributions of intestinal bacteria to nutrition and metabolism in the critically ill[J]. Surg Clin North Am, 2011, 91(4): 771-785, viii.
doi: 10.1016/j.suc.2011.05.001 pmid: 21787967 |
[27] |
Metges CC. Contribution of microbial amino acids to amino acid homeostasis of the host[J]. J Nutr, 2000, 130(7): 1857S-1864S.
doi: 10.1093/jn/130.7.1857S pmid: 10867063 |
[28] |
Bergen WG, Wu GY. Intestinal nitrogen recycling and utilization in health and disease[J]. J Nutr, 2009, 139(5): 821-825.
doi: 10.3945/jn.109.104497 pmid: 19282369 |
[29] |
Neis EPJG, Dejong CHC, Rensen SS. The role of microbial amino acid metabolism in host metabolism[J]. Nutrients, 2015, 7(4): 2930-2946.
doi: 10.3390/nu7042930 pmid: 25894657 |
[30] |
Bertolini MS, Docampo R. MICU1 and MICU2 potentiation of Ca2+ uptake by the mitochondrial Ca2+ uniporter of Trypanosoma cruzi and its inhibition by Mg2[J]. Cell Calcium, 2022, 107: 102654.
doi: 10.1016/j.ceca.2022.102654 URL |
[31] |
Giorgi C, Romagnoli A, Pinton P, et al. Ca2+ signaling, mitochondria and cell death[J]. Curr Mol Med, 2008, 8(2): 119-130.
doi: 10.2174/156652408783769571 URL |
[32] |
Fu ZD, Selwyn FP, Cui JY, et al. RNA-Seq unveiled section-specific host response to lack of gut microbiota in mouse intestine[J]. Toxicol Appl Pharmacol, 2021, 433: 115775.
doi: 10.1016/j.taap.2021.115775 URL |
[33] |
Zhang YN, Wang YJ, Wang XY, et al. Acetyl-coenzyme A acyltransferase 2 promote the differentiation of sheep precursor adipocytes into adipocytes[J]. J Cell Biochem, 2019, 120(5): 8021-8031.
doi: 10.1002/jcb.28080 |
[1] | GU Yang, TAN Hai, YUAN Lin-na, SUN Hai-yan, CHANG Jing-ling, LI Zhi-gang. Physiological Mechanisms for Enhanced Cyclic Adenosine Monophosphate Biosynthesis by Sodium Fluoride in Arthrobacter sp. [J]. Biotechnology Bulletin, 2021, 37(5): 108-116. |
[2] | XIE Wen-ya, ZOU Shi-ying, Gao Ru-xin, HE Xiao-yun. Research Progress on the Mitochondrial Pyruvate Carrier(MPC) [J]. Biotechnology Bulletin, 2019, 35(7): 196-201. |
[3] | ZHANG Jing-rou, SHAO Gui-fang, WANG Jiao, ZHANG Shui, YANG Ting-yu, DENG Ming-hua. Clone and Expression Profile Analyses of the Gene CaATP9 in Pepper(Capsicum annuum L.)Male Sterility Line [J]. Biotechnology Bulletin, 2019, 35(11): 9-15. |
[4] | CHEN Ke, DING Yan-ping, WANG Jian-lin, SHAO Bao-ping. Research Progress on p53-involved Metabolic Regulation [J]. Biotechnology Bulletin, 2016, 32(11): 52-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||