[1] Carter A, Mitchell Ce Shi, Courtney C, et al. Structure of PA1221, A nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains[J]. Biochemistry, 2012, 51(15): 3252-3263.
[2] Lipmann F. Enzymatic synthesis of acetyl phosphate[J]. J Biol Chem, 1944(155): 55-70.
[3] McElroy WD, DeLuca M, Travis J. Molecular uniformity in biological catalyses. The enzymes concerned with firefly luciferin, amino acid, and fatty acid utilization are compared[J]. Science, 1967, 157 (3785): 150-160.
[4] Babbitt PC, Kenyon GL, et al. Ancestry of the 4-chlo-robenzoate dehalogenase: analysis of amino acid sequence identities among families of acyl:adenyl ligases, enoyl-CoA hydratases/isome-rases, and acyl- CoA thioesterases[J]. Biochemistry, 1992, 31(24): 5594-5604.
[5] Turgay K, Krause M, Marahiel MA. Four homologous domains in the primary structure of GrsB are related to domains in a superfamily of adenylate-forming enzymes[J]. Mol Microbiol, 1992, 6(18): 2743-2744.
[6] Diez B, Gutierrez S, Barredo JL, et al. The cluster of penicillin biosynthetic genes. Identification and characterization of the pcbAB gene encoding the alpha-aminoadipyl- cysteinyl-valine synthetase and linkage to the pcbC and penDE genes[J]. J Biol Chem, 1990, 265(27): 16358-16365.
[7] Rusnak F, Faraci WS, Walsh CT. Subcloning, expression, and purification of the enterobactin biosynthetic enzyme 2, 3-dihydroxybenzoate- AMP ligase: demonstration of enzyme-bound (2, 3-dihydroxybenzoyl) adenylate product[J]. Biochemistry, 1989, 28(17):6827-6835.
[8] Gulick AM. Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase[J]. ACS Chem Biol, 2009, 4(10): 811-827.
[9] Walsh CT. The chemical versatility of natural-product assembly lines[J]. Acc Chem Res, 2008, 41(1): 4-10.
[10] Ferrer JL, Austin MB, Stewart C, Noel JP. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids[J].
Plant Physiol Biochem, 2008, 46(3): 356-370.
[11] Chang KH, Xiang H, Dunaway-Mariano D.Acyl-adenylate motif of the acyl-adenylate/thioester-forming enzyme superfamily: a sitedirected mutagenesis study with the Pseudomonas sp. strain CBS3 4-chlorobenzoate:coenzyme A ligase[J]. Biochemistry, 1997, 36 (50): 15650-15659.
[12] Marahiel MA, StachelhausT, Mootz HD. Modular peptide synthetases involved in nonribosomal peptide synthesis[J]. Chem Rev, 1997, 97(7): 2651-2674.
[13] Osman KT, Du LQ, He YJ, et al. Crystal structure of Bacillus cereus D-alanyl carrier protein ligase (DltA) in complex with ATP[J].
J Mol Biol, 2009, 388(2): 345-355.
[14] Kochan G, Pilka ES, et al. Structural snapshots for the conformationdependent catalysis by human medium-chain acylcoenzyme A synthetase ACSM2A[J]. J Mol Biol, 2009, 388(5): 997-1008.
[15] Conti, E, StachelhausT, Marahiel MA, et al. Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S[J]. EMBO J, 1997, 16(14): 4174-4183.
[16] May JJ, Kessler N, Marahiel MA, et al. Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases[J]. Proc Natl Acad Sci U S A, 2002, 99 (19): 12120-12125.
[17] Branchini BR, Southworth TL, et al. Mutagenesis evidence that the partial reactions of firefly bioluminescence are catalyzed by different conformations of the luciferase C-terminal domain[J]. Biochemistry, 2005, 44(5): 1385-1393.
[18] Franks NP, JenkinsA, Conti E, et al. Structural basis for the inhibition of firefly luciferase by a general anesthetic[J]. Biophys J, 1998, 75(5): 2205-2211.
[19] Nakatsu T, Ichiyama S, Hiratake J, et al. Structural basis for the spectral difference in luciferase bioluminescence[J]. Nature, 2006, 440(7082): 372-376.
[20] Hisanaga Y, Ago H, et al. Structural basis of the substrate-specific two-step catalysis of long chain fatty acyl-CoA synthetase dimer [J]. J Biol Chem, 2004, 279(30): 31717-31726.
[21] Gobin S, Thuillier L, Jogl G, et al. Functional and structural basis of carnitine palmitoyltransferase 1A deficiency[J]. J Biol Chem, 2003, 278(50): 50428-50434.
[22] Gulick AM, Starai VJ, et al. The 1.75 A crystal structure of acetyl- CoA synthetase bound to adenosine-5'-propylphosphate and coenzyme A[J]. Biochemistry, 2003, 42(10): 2866-2873.
[23] Drake EJ, Nicolai DA, Gulick AM. Structure of the EntB multidomain nonribosomal peptide synthetase and functional analysis of its interaction with the EntE adenylation domain[J].
Chem Biol, 2006, 13(4): 409-419.
[24] Branchini BR, Rosenberg JC, Fontaine DM, et al. Bioluminescence is produced from a trapped firefly luciferase conformation predicted by the domain alternation mechanism[J]. J Am Chem Soc, 2011, 110(3): 11088-11091.
[25] Ayabe K, Zako T, Ueda H, et al. The role of firefly luciferase C-terminal domain in efficient coupling of adenylation and oxidative steps[J]. FEBS Lett, 2005, 579(20): 4389-4394.
[26] Reger AS, Carney JM, Gulick AM. Biochemical and crystallographic analysis of substrate binding and conformational changes in acetyl- CoA synthetase[J]. Biochemistry, 2007, 46(22): 6536-6546.
[27] Yonus H, Neumann P, Zimmermann S, et al. Crystal structure of DltA. Implications for the reaction mechanism of non-ribosomal peptide synthetase adenylation domains[J]. J Biol Chem, 2008, 283(47): 32484-32491.
[28] Reger AS, Wu R, Dunaway D, Gulick AM. Structural characterization of a 140 degrees domain movement in the two-step reaction catalyzed by 4-chlorobenzoate:CoA ligase[J]. Biochemistry, 2008, 47(31): 8016-8025.
[29] Jogl G, Tong L. Crystal structure of yeast acetyl-coenzyme A synthetase in complex with AMP[J]. Biochemistry, 2004, 43(6): 1425-1431.
[30] Wu R, Southworth TL, Murtiashaw MH, et al. The mechanism of domain alternation in the acyl-adenylate forming ligase superfamily member 4-chlorobenzoate: coenzyme A ligase[J]. Biochemistry, 2009, 48(19): 4115-4125. |