[1] 渠琛玲, 玉崧成, 付雷. 甘薯的营养保健及其加工现状[J]. 农产品加工:学刊, 2010(10):74-76, 79. [2] 安康, 房伯平, 陈景益, 等. 甘薯保健功能的研究进展及发展前景[J]. 广东农业科学, 2004(增刊):6-9. [3] 于颖. 甘薯及甘薯的营养价值[J]. 科技创新导报, 2011(28):135. [4] 刘伟明. 甘薯的营养保健作用及开发利用[J]. 中国农村小康科技, 2007(1):41, 45. [5] Bouis HE, Hotz C, McClafferty B, et al. Biofortification:a new tool to reduce micronutrient malnutrition[J]. Food and Nutrition Bulletin, 2011, 32(1 Suppl):S31-40. [6] Mukherjee A, Debata BK, Mukherjee PS, et al. Morphohistobioche-mical characteristics of embryogenic and nonembryogenic callus cultures of sweet potato(Ipomoea batatas L.)[J]. Cytobios, 2001, 106(412):113-124. [7] 周丽艳, 高书国, 杨文利, 等. 甘薯愈伤组织的诱导[J]. 河北职业技术师范学院学报, 2002, 16(4):26-29, 36. [8] 张勇为, 纳海燕, 王大一, 等. 甘薯愈伤组织中的淀粉酶[J]. 植物生理与分子生物学学报, 2002, 28(5):375-378. [9] 周丽艳, 高书国, 毕艳娟, 等. 甘薯愈伤组织诱导及植株再生的研究[J]. 中国农学通报, 2003, 19(3):61-64, 68. [10] 王兰兰, 张立军, 陈贵. 甘薯愈伤组织对干旱胁迫的生理反应研究[J]. 沈阳师范大学学报:自然科学版, 2006, 24(4):444-447. [11] El Abidine Triqui Z, Guédira A, Chlyah A, et al. Effect of genotype, gelling agent, and auxin on the induction of somatic embryogenesis in sweet potato(Ipomoea batatas Lam.)[J]. Comptes Rendus Biologies, 2008, 331(3):198-205. [12] 何博文, 岳昌武, 张义正. 甘薯愈伤组织分化及抗生素耐受性研究[J]. 中国农学通报, 2009, 25(9):140-143. [13] 周志林, 唐君, 张允刚, 等. 不同基因型甘薯愈伤组织诱导及植株再生[J]. 西北农业学报, 2010, 19(9):203-206. [14] 马佩勇, 贾赵东, 谢一芝, 等. 不同甘薯材料胚性愈伤组织的诱导与再生[J]. 江苏农业科学, 2012, 40(2):28-29. [15] 苏文瑾, 王连军, 雷剑, 等. 激素组合对甘薯鄂薯6号茎尖愈伤组织诱导及植株再生的影响[J]. 湖北农业科学, 2012, 51(23):5503-5504, 5520. [16] Otani M, Wakita Y, Shimada T. Production of herbicide-resistant sweetpotato(Ipomoea batatas(L.)Lam.)plants by Agrobacterium tumefaciens-mediated transformation[J]. Breeding Science, 2003, 53:145-148. [17] Yi G, Shin YM, Choe G, et al. Production of herbicide-resistant sweet potato plants transformed with the bar gene[J]. Biotechnology Letters, 2007, 29(4):669-675. [18] Choi HJ, Chandrasekhar T, Lee HY, et al. Production of herbicide-resistant transgenic sweet potato plants through Agrobacterium tumefaciens method[J]. Plant Cell, Tissue and Organ Culture, 2007, 91(3):235-242. [19] 臧宁, 翟红, 王玉萍, 等. 表达bar基因的抗除草剂转基因甘薯的获得[J]. 分子植物育种, 2007, 5(4):475-479. [20] 臧宁, 张美彦, 翟红, 等. 根癌农杆菌介导的抗除草剂转基因甘薯植株的获得[J]. 农业生物技术, 2008, 16(1):103-107. [21] 阮龙, 高正良, 陈义红, 等. 干旱耐逆基因(HS1)转化甘薯获得转基因植株[J]. 激光生物学报, 2010, 19(4):552-556. [22] Kasukabe Y, He LX, Watakabe Y, et al. Improvement of environ-mental stress tolerance of sweet potato by introduction of genes for spermidine synthase[J]. Plant Biotechnology, 2006, 23:75-83. [23] Fan W, Zhang M, Zhang H, et al. Improved tolerance to various abiotic stresses in transgenic sweet potato(Ipomoea batatas)expressing spinach betaine aldehyde dehydrogenase[J]. PLoS One, 2012, 7(5):e37344. doi:10.1371/ journal. pone.0037344. [24] 李建梅, 邓西平. 干旱和复水条件下转基因甘薯的光合特性[J]. 水土保持学报, 2007, 21(4):193-196. [25] Park SC, Kim YH, Jeong JC, et al. Sweetpotato late embryogenesis abundant 14(IbLEA14)gene influences lignification and inc-reases osmotic-and salt stress-tolerance of transgenic calli[J]. Planta, 2011, 233(3):621-634. [26] 王欣, 过晓明, 李强, 等. 转逆境诱导型启动子SWPA2 驱动Cu/Zn SOD和APX基因甘薯(Ipomoea batatas(L.)Lam.)耐盐性[J]. 分子植物育种, 2011, 9(6):754-759. [27] Kim SH, Ahn YO, Ahn MJ, et al. Down-regulation of β-carotene hy-droxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato[J]. Phytochemistry, 2012, 74:69-78. [28] 成雨洁, 伍小兵, 邓西平, 等. 干旱胁迫下转基因甘薯块根膨大期水分利用效率和生理代谢特征[J]. 西北植物学报, 2012, 32(11):2255-2263. [29] Kim YH, Kim MD, Park SC, et al. SCOF-1-expressing transgenic sweetpotato plants show enhanced tolerance to low-temperature stress[J]. Plant Physiology and Biochemistry, 2011, 49(12):1436-1441. [30] Kreuze JF, Klein IS, Lazaro MU, et al. RNA silencing-mediated resistance to a crinivirus(Closteroviridae)in cultivated sweet potato(Ipomoea batatas L.)and development of sweet potato virus disease following co-infection with a potyvirus[J]. Molecular Plant Pathology, 2008, 9(5):589-598. [31] Muramoto N, Tanaka T, Shimamura T, et al. Transgenic sweet potato expressing thionin from barley gives resistance to black rot disease caused by Ceratocystis fimbriata in leaves and storage roots[J]. Plant Cell Reports, 2012, 31(6):987- 997. [32] 蒋盛军, 刘庆昌, 翟红, 等. 水稻巯基蛋白酶抑制剂基因(OCI)转化甘薯获得转基因植株[J]. 农业生物技术学报, 2004, 12(1):34-37. [33] Shimada T, Otani M, Hamada T, et al. Increase of amylose content of sweet potato starch by RNA interference of the starch branching enzyme II gene(IbSBEII)[J]. Plant Biotechnology, 2006, 23:85-90. [34] Otani M, Hamada T, Katayama K, et al. Inhibition of the gene exp-ression for granule- bound starch synthase I by RNA interference in sweet potato plants[J]. Plant Cell Reports, 2007, 26(10):1801-1807. [35] Takahata Y, Tanaka M, Otani M, et al. Inhibition of the expression of the starch synthase II gene leads to lower pasting temperature in sweetpotato starch[J]. Plant Cell Reports, 2010, 29(6):535-543. [36] Santa-Maria MC, Yencho CG, Haigler CH, et al. Starch self-proce-ssing in transgenic sweet potato roots expressing a hyperthermop-hilic α-amylase[J]. Biotechnology Progress, 2011, 27(2):351-359. [37] 曹阳. 人乳铁蛋白基因克隆、表达及转基因动物制备[D]. 大连:大连理工大学, 2003:1. [38] 罗红蓉, 张勇为, 张义正. 根癌农杆菌转化甘薯高频获得抗性愈伤组织的研究[J]. 四川大学学报:自然科学版, 2002, 39(增刊):21-24. [39] 高峰, 龚一富, 林忠平, 等. 根癌农杆菌介导的甘薯遗传转化及转基因植株的再生[J]. 作物学报, 2001, 27(6):751-756. [40] 毕瑞明, 高峰. 转10 kD玉米醇溶蛋白基因甘薯蛋白质及农艺性状分析[J]. 生物技术, 2007, 17(3):33-36. [41] Berberich T, Takagi T, Miyazaki A, et al. Production of mouse adiponectin, an anti-diabetic protein, in transgenic sweet potato plants[J]. Journal of Plant Physiology, 2005, 162(10):1169-1176. [42] Noh SA, Lee HS, Kim YS, et al. Down-regulation of the IbEXP1 gene enhanced storage root development in sweet potato[J]. Journals of Experimental Botany, 2013, 64(1):129-142. [43] 任凤仪, 房伯平, 高峰. 蛋白质技术在甘薯病毒病研究的应用[J]. 广东农业科学, 2008(增刊):59-62. |