[1] Michener JK, Thodey K, Liang JC, et al. Applications of genetically-encoded biosensors for the construction and control of biosynthetic pathways[J]. Metab Eng, Elsevier, 2012, 14(3):212-222. [2] Eggeling L, Bott M, Marienhagen J. Novel screening methods-biosensors[J]. Curr Opin Biotechnol, 2015, 35:30-36. [3] Qian S, Cirino PC. Using metabolite-responsive gene regulators to improve microbial biosynthesis[J]. Current Opinion in Chemical Engineering, 2016, 14:93-102. [4] Libis V, Delépine B, Faulon JL. Sensing new chemicals with bacterial transcription factors[J]. Curr Opin Microbiol, 2016, 33:105-112. [5] Liu D, Evans T, Zhang F. Applications and advances of metabolite biosensors for metabolic engineering[J]. Metabolic Engineering, 2015, 31:15-22. [6] Williams TC, Pretorius IS, Paulsen IT. Synthetic evolution of metabolic productivity using biosensors[J]. Trends in Biotechnology, 2016, 34(5):371-381. [7] Latchman DS. Transcription factors:An overview[J]. Int J Biochem Cell Biol, 1997, 29(12):1305-1312. [8] Binder S, Schendzielorz G, Stabler N, et al. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level[J]. Genome Biology, 2012, 13 (5):1-12. [9] Wang M, Li S, Zhao H. Design and engineering of intracellular-metabolite-sensingregulation gene circuits in Saccharomyces cerevisiae[J]. Biotechnol Bioeng, 2016, 113(1):206-215. [10] Dietrich JA, Shis DL, Alikhani A, et al. Transcription factor-based screens and synthetic selections for microbial small-molecule biosynthesis[J]. ACS Synthetic Biology, 2013, 2(1):47-58. [11] Mustafi N, Grünberger A, Kohlheyer D, et al. The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids[J]. Metab Eng, 2012, 14(4):449-457. [12] Mahr R, Gätgens C, Gaetgens J, et al. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum[J]. Metab Eng, 2015, 32:184-194. [13] Schendzielorz G, Dippong M, Grünberger A, et al. Taking control over control:Use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways[J]. ACS Synthetic Biology, 2014, 3(1):21-29. [14] Chou HH, Keasling JD. Programming adaptive control to evolve increased metabolite production[J]. Nature Communications, 2013, 4(2595):1-8. [15] Raman S, Rogers JK, Taylor ND, et al. Evolution-guided optimization of biosynthetic pathways[J]. Proceedings of the National Academy of Sciences, 2014, 111(50):17803-17808. [16] Siedler S, Schendzielorz G, Binder S, et al. SoxR as a single-cell biosensor for NADPH-consuming enzymes in Escherichia coli[J]. ACS Synthetic Biology, 2014, 3(1):41-47. [17] Li S, Si T, Wang M, et al. Development of a synthetic Malonyl-CoA sensor in Saccharomyces cerevisiae for intracellular metabolite monitoring and genetic screening[J]. ACS Synthetic Biology, 2015, 4(12):1308-1315. [18] Xiao Y, Bowen CH, Liu D, et al. Exploiting non-genetic, cell-to-cell variation for enhanced biosynthesis[J]. Nature Chemical Biology, 2016, 12(5):339-344. [19] Tang SY, Fazelinia H, Cirino PC. AraC regulatory protein mutants with altered effector specificity[J]. Journal of the American Chemical Society, 2008, 130(15):5267-5271. [20] Tang SY, Cirino PC. Design and application of a mevalonate-responsive regulatory protein[J]. Angewandte Chemie-International Edition, 2011, 50(5):1084-1086. [21] Frei CS, Wang Z, Qian S, et al. Analysis of amino acid substitutions in AraC variants that respond to triacetic acid lactone[J]. Protein Science, 2016, 25(4):804-814. [22] Tang SY, Qian S, Akinterinwa O, et al. Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter[J]. J Am Chem Soc, 2013, 135(27):10099-10103. [23] Chen W, Zhang S, Jiang P, et al. Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynthesis[J]. Metab Eng, 2015, 30:149-155. [24] Liang WF, Cui LY, Cui JY, et al. Biosensor-assisted transcriptional regulator engineering for Methylobacterium extorquens AM1 to improve mevalonate synthesis by increasing the acetyl-CoA supply[J]. Metabolic Engineering, 2016 doi:10.1016/j.ymben.2016.11.010. [25] Epshtein V, Mironov AS, Nudler E. The riboswitch-mediated control of sulfur metabolism in bacteria[J]. Proc Natl Acad Sci USA, 2003, 100(9):5052-5056. [26] Mellin JR, Cossart P. Unexpected versatility in bacterial riboswi-tches[J]. Trends in Genetics, 2015, 31(3):150-156. [27] Breaker RR. Prospects for riboswitch discovery and analysis[J]. Molecular Cell, 2011, 43(6):867-879. [28] Winkler WC, Nahvi A, Roth A, et al. Control of gene by a natural metabolite-responsive ribozyme[J]. Nature, 2004, 428(6980):281-286. [29] Grundy FJ, Lehman SC, Henkin TM. The L box regulon:lysine sensing by leader RNAs of bacterial lysine biosynthesis genes[J]. Proc Natl Acad Sci USA, 2003, 100(21):12057-62. [30] Mandal M. A glycine-dependent riboswitch that uses cooperative binding to control gene expression[J]. Science, 2004, 306(5694):275-279. [31] Winkler W, Nahvi A, Breaker RR. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene[J]. Nature, 2002, 419(6910):952-956. [32] Nahvi A, Sudarsan N, Ebert MS, et al. Genetic control by a metabo-lite binding mRNA[J]. Chem Biol, 2002, 9(9):1043-1049. [33] Sudarsan N, Wickiser JK, Nakamura S, et al. An mRNA structure in bacteria that controls gene by binding lysine[J]. Genes and Development, 2003, 17(21):2688-2697. [34] Winkler WC. An mRNA structure that controls gene by binding FMN[J]. Proc Natl Acad Sci USA, 2002, 99(25):15908-15913. [35] Mironov AS, Gusarov I, Rafikov R, et al. Sensing small molecules by nascent RNA:A mechanism to control transcription in bacteria[J]. Cell, 2002, 111(5):747-756. [36] Dann CE, Wakeman CA, Sieling CL, et al. Structure and mechanism of a metal-sensing regulatory RNA[J]. Cell, 2007, 130(5):878-892. [37] Baker JL, Sudarsan N, Weinberg Z, et al. Widespread genetic switches and toxicity resistance proteins for fluoride[J]. Science, 2012, 335(6065):233-235. [38] Cho EJ, Lee JW, Ellington AD. Applications of aptamers as sensors[J]. Annu Rev Anal Chem, 2009, 2:241-264. [39] Strack RL, Jaffrey SR. New approaches for sensing metabolites and proteins in live cells using RNA[J]. Current Opinion in Chemical Biology, 2013, 17(4):651-655. [40] Henkin TM. Riboswitch RNAs:using RNA to sense cellular metabolism[J]. Genes Dev, 2008, 22(24):3383-3390. [41] Fowler CC, Brown ED, Li Y. Using a riboswitch sensor to examine coenzyme B12 metabolism and transport in E. coli[J]. Chemistry and Biology, 2010, 17(7):756-765. [42] Michener JK, Smolke CD. High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch[J]. Metabolic Engineering, 2012, 14(4):306-316. [43] Gredell JA, Frei CS, Cirino PC. Protein and RNA engineering to customize microbial molecular reporting[J]. Biotechnology Journal, 2012, 7(4):477-499. [44] Espah Borujeni A, Mishler DM, Wang J, et al. Riboswitch calculator. Design of synthetic riboswitches from diverse RNA aptamers. [EB/OL]. 2014. https://salis. psu. edu/software/RiboswitchCalculator_EvaluateMode. [45] Xie W, Ye L, Lv X, et al. Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae[J]. Metab Eng, 2015, 28:8-18. [46] Yuan J, Ching CB. Dynamic control of ERG9 for improved amorpha-4, 11-diene production in Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2015, 14(38):1-10. [47] Zhang F, Carothers JM, Keasling JD. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids[J]. Nat Biotechnol, 2012, 30(4):354-359. [48] Fang M, Wang T, Zhang C, et al. Intermediate-sensor assisted push-pull strategy and its application in heterologous deoxyviolacein production in Escherichia coli[J]. Metab Eng, 2016, 33:41-51. [49] Peroza EA, Ewald JC, Parakkal G, et al. A genetically encoded Förster resonance energy transfer sensor for monitoring in vivo trehalose-6-phosphate dynamics[J]. Analytical Biochemistry, 2015, 474:1-7. [50] Behjousiar A, Kontoravdi C, Polizzi KM. In situ monitoring of intracellular glucose and glutamine in CHO cell culture[J]. PLoS One, 2012, 7(4):1-9. [51] Dietrich JA, Mckee AE, Keasling JD. High-throughput metabolic engineering:Advances in small-molecule screening and selection[J]. Annu Rev Biochem, 2010, 79(1):563-590. [52] Rogers JK, Church GM. Multiplexed engineering in biology[J]. Trends in Biotechnology, 2016, 34(3):198-206. [53] Jeong YS, Choi SL, Kyeong HH, et al. High-throughput screening system based on phenolics-responsive transcription activator for directed evolution of organophosphate-degrading enzymes[J]. Protein Eng Des Sel, 2012, 25(11):725-731. [54] Choi SL, Rha E, Lee SJ, et al. Toward a generalized and high-throughput enzyme screening system based on artificial genetic circuits[J]. ACS Synthetic Biology, 2014, 3(3):163-171. [55] Mcdonald AG, Boyce S, Tipton KF. ExplorEnz:The primary source of the IUBMB enzyme list[J]. Nucleic Acids Research, 2009, 37(suppl. 1):593-597. [56] Liu D, Xiao Y, Evans BS, et al. Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator[J]. ACS Synthetic Biology, 2015, 4(2):132-140. [57] Xu P, Wang W, Li L, et al. Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli[J]. ACS Chemical Biology, 2014, 9(2):451-458. [58] Meyer A, Pellaux R, Potot S, et al. Optimization of a whole-cell biocatalyst by employing genetically encoded product sensors inside nanolitre reactors[J]. Nature Chemistry, 2015, 7(8):673-678. [59] Yang J, Seo SW, Jang S, et al. Synthetic RNA devices to expedite the evolution of metabolite-producing microbes[J]. Nature Communications, 2013, 4:1-7. [60] Umeyama T, Okada S, Ito T. Synthetic gene circuit-mediated monitoring of endogenous metabolites:Identification of GAL11 as a novel multicopy enhancer of S-adenosylmethionine level in yeast[J]. ACS Synthetic Biology, 2013, 2(8):425-430. [61] Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene[J]. Cell, 2013, 152(5):1173-1183. [62] Nakashima N, Ohno S, Yoshikawa K, et al. A vector library for silencing central carbon metabolism genes with antisense RNAs in Escherichia coli[J]. Appl Environ Microbiol, 2014, 80(2):564-573. [63] Farmer WR, Liao JC. Improving lycopene production in Escherichia coli by engineering metabolic control[J]. Nature Biotechnology, 2000, 18(5):533-537. [64] Xu P, Li L, Zhang F, et al. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control[J]. Proc Natl Acad Sci USA, 2014, 111(31):11299-11304. [65] David F, Nielsen J, Siewers V. Flux control at the Malonyl-CoA node through hierarchical dynamic pathway regulation in Saccharomyces cerevisiae[J]. ACS Synth Biol, 2016, 5(3):224-233. [66] Zhou LB, Zeng AP. Exploring lysine riboswitch for metabolic flux control and improvement of l-lysine synthesis in Corynebacterium glutamicum[J]. ACS Synthetic Biology, 2015, 4(6):729-734. [67] Zhou LB, Zeng AP. Engineering a lysine-ON riboswitch for metabolic control of lysine production in Corynebacterium glutamicum[J]. ACS Synth Biol, 2015, 4(12):1335-1340. [68] Soma Y, Hanai T. Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production[J]. Metab Eng, 2015, 30:7-15. [69] Dahl RH, Zhang F, Alonso-Gutierrez J, et al. Engineering dynamic pathway regulation using stress-response promoters[J]. Nature Biotechnology, 2013, 31(11):1039-1046. [70] Lidstrom ME, Konopka MC. The role of physiological heterogeneity in microbial population behavior[J]. Nature Chemical Biology, Nature Publishing Group, 2010, 6(10):705-712. [71] Carlson ED, Gan R, Hodgman CE, et al. Cell-free protein synthesis:Applications come of age[J]. Biotechnology Advances, 2012, 30(5):1185-1194. [72] Hodgman CE, Jewett MC. Cell-free synthetic biology:Thinking outside the cell[J]. Metab Eng, 2012, 14(3):261-269. [73] Skjoedt M, Snoek T, Kildegaard K, et al. Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast[J]. Nature Chemical Biology, 2016, 12(11):951-958. [74] De Mey M, Maertens J, Lequeux GJ, et al. Construction and model-based analysis of a promoter library for E. coli:an indispensable tool for metabolic engineering[J]. BMC Biotechnology, 2007, 7(1):1-14. [75] Block DHS, Hussein R, Liang LW, et al. Regulatory consequences of gene translocation in bacteria[J]. Nucleic Acids Research, 2012, 40(18):8979-8992. [76] Murphy KF, Balázsi G, Collins JJ. Combinatorial promoter design for engineering noisy gene[J]. Proc Natl Acad Sci USA, 2007, 104(31):12726-12731. [77] Shis DL, Bennett MR. Library of synthetic transcriptional and gates built with split T7 RNA polymerase mutants[J]. Proc Natl Acad Sci USA, 2013, 110(13):5028-5033. [78] Salis HM, Mirsky EA, Voigt CA. Automated design of synthetic ribosome binding sites to control protein[J]. Nature Biotechnology, 2009, 27(10):946-950. [79] Chubiz LM, Rao CV. Computational design of orthogonal ribosomes[J]. Nucleic Acids Res, 2008, 36(12):4038-4046. [80] Welch M, Govindarajan S, Ness JE, et al. Design parameters to control synthetic gene in Eschorichia coli[J]. PLoS One, 2009, 4(9):1-10. [81] Raman S, Taylor N, Genuth N, et al. Engineering allostery[J]. Trends in Genetics, 2014, 30(12):521-528. |