[1] Cock JH. Cassava:a basic energy source in the tropics[J]. Science, 1982, 218(4574):755-762. [2] 伍薇, 柯佑鹏. 中国木薯产业发展现状及前景展望[J]. 中国热带农业, 2011, 1(3):6-9. [3] 陈青, 卢芙萍, 黄贵修, 等. 木薯害虫普查及其安全性评估[J]. 热带作物学报, 2010, 31(5):819-827. [4] Smith CM. Plant resistance to insects[M]. A fundamental approach:John Wiley and Sons Ltd, 1989. [5] Taylor N, Chavarriaga M, Raemakers K, et al. Development and application of transgenic technologies in cassava[J]. Plant Molecular Biology, 2004, 56(4):671-688. [6] Felton GW, Donato KK, Broadway RM, et al. Impact of oxidized plant phenolics on the nutritional quality of dietary protein to a noctuid herbivore, Spodoptera exigua[J]. Journal of Insect Physiology, 1992, 38(4):277-285. [7] Yang ZW, Duan XN, Jin S, et al. Regurgitant derived from the tea geometrid Ectropis obliqua suppresses wound-induced polyphenol oxidases activity in tea plants[J]. Journal of Chemical Ecology, 2013, 39(6):744-751. [8] 王丹, 陈亮. 茶树对茶尺蠖抗性机制研究[J]. 茶叶科学, 2014, 34(6):541-547. [9] Han Y, Wang Y, Bi JL, et al. Constitutive and induced activities of defense-related enzymes in aphid-resistant and aphid-susceptible cultivars of wheat[J]. Journal of Chemical Ecology, 2009, 35(2):176-182. [10] 陈青, 张银东. 3 种氧化酶与辣椒抗蚜性的相关性[J] . 热带作物学报, 2004, 25(3):42-46. [11] 李迁, 卢芙萍, 陈青, 等. 木薯种质对朱砂叶螨的抗性评价[J]. 热带作物学报, 2015, 36(1):143-151. [12] Lu FP, Chen Q, Chen ZS, et al. Effects of heat stress on development, reproduction and activities of protective enzymes in Mononychellus mcgregori[J]. Experimental and Applied Acarology, 2014, 63(2):267-284. [13] Xu J, Duan X, Yang J, et al. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots[J]. Plant Physiology, 2013, 161(3):1517-1528. [14] Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Research, 2001, 29(9):e45-e45. [15] Ray PD. Huang BW, Tsuji Y. Reactive oxygen species(ROS)homeostasis and redox regulation in cellular signaling[J]. Cell Signal, 2012, 24(5):981-990. [16] Marco H, Gregg AH. Host plant-specific remodeling of midgut physiology in the generalist insect herbivore Trichoplusia ni[J]. Insect Biochemistry and Molecular Biology, 2014, 50(3):58-67. [17] Juan MA, Bernardus CJ. Schimmel, Joris JG, et al. Spider mites suppress tomato defenses downstream of jasmonate and salicylate independently of hormonal crosstalk[J]. New Phytologist, 2015, 205(2):828-840. [18] Gregg AH and Georg J. Plant immunity to insect herbivores[J]. Annual Review of Plant Biology, 2008, 59(1):41-66. [19] Franzen, LD, Gutsche AR, Heng-Moss T, et al. Physiological and biochemical responses of resistant and susceptible wheat to injury by Russian wheat aphid[J]. Journal of Economic Entomology, 2007, 100(5):1692-1703. [20] 张春妮. 甘蓝苗期对桃蚜抗性的生化机制研究[D]. 杨陵:西北农林大学, 2005. [21] Krishnan N, Kodrík D. Antioxidant enzymes in Spodoptera littoralis(Boisduval), are they enhanced to protect gut tissues during oxidative stress[J]. Journal of Insect Physiology, 2006, 52(1):11-20. [22] Barbehenn RV. Gut-based antioxidant enzymes in a polyphagous and a graminivorous grasshopper[J]. Journal of Chemical Ecology, 2002, 28(7):1329-1347. |