[1] Diels L, van der Lelie N, Bastiaens L. New developments in treatment of heavy metal contaminated soils[J]. Reviews in Environmental Science and Biotechnology, 2002, 1(1):75-82. [2] Muchuweti A, Birkett JW, Chinyanga E, et al. Heavy metal content of vegetables irrigated with mixtures of wastewater and sewage sludge in Zimbabwe:Implications for human health[J]. Agriculture Ecosystems and Environment, 2006, 112(1):41-48. [3] Martin TA, Ruby MV. Review of in situ remediation technologies for lead, zinc, and cadmium in soil[J]. Remediation Journal, 2004, 14(3):35-53. [4] Tandy S, Ammann A, Schulin R, et al. Biodegradation and speciation of residual SS-ethylenediaminedisuccinic acid(EDDS)in soil solution left after soil washing[J]. Environmental Pollution, 2006, 142(2):191-199. [5] Kalinowski B, Liermann L, Brantley S, et al. X-ray photoelectron evidence for bacteria-enhanced dissolution of hornblende[J]. Geochimica et Cosmochimica Acta, 2000, 64(8):1331-1343. [6] Khan AG. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation[J]. Journal of Trace Elements in Medicine and Biology, 2005, 18(4):355-364. [7] Rajkumar M, Freitas H. Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals[J]. Chemosphere, 2008, 71(5):834-842. [8] Stearns JC, Shah S, Greenberg BM, et al. Tolerance of transgenic canola expressing 1-aminocyclopropane-1-carboxylic acid deaminase to growth inhibition by nickel[J]. Plant Physiology and Biochemistry, 2005, 43(7):701-708. [9] Belimov A, Hontzeas N, Safronova V, et al. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard(Brassica juncea L. Czern. )[J]. Soil Biology and Biochemistry, 2005, 37(2):241-250. [10] Arshad M, Saleem M, Hussain S. Perspectives of bacterial ACC deaminase in phytoremediation[J]. Trends in Biotechnology, 2007, 25(8):356-362. [11] Harley JL, Smith SE. Mycorrhizal symbiosis[M]. Academic Press, Inc. , 1983. [12] Sousa NR, Ramos MA, Marques AP, et al. The effect of ectomycorrhizal fungi forming symbiosis with Pinus pinaster seedlings exposed to cadmium[J]. Science of the Total Environment, 2012, 414(1):63-67. [13] Herzog C, Peter M, Pritsch K, et al. Drought and air warming affects abundance and exoenzyme profiles of Cenococcum geophilum associated with Quercus robur, Q. petraea and Q. Pubescens[J]. Plant Biology, 2013, 15(s1):230-237. [14] 温祝桂, 陈亚华. 中国外生菌根真菌研究进展[J]. 生物技术通报, 2013, 1(2):22-30. [15] Ma Y, He J, Ma C, et al. Ectomycorrhizas with Paxillus involutus enhance cadmium uptake and tolerance in Populus× canescens[J]. Plant, Cell and Environment, 2014, 37(3):627-642. [16] Menkis A, Vasiliauskas R, Taylor AFS, et al. Afforestation of abandoned farmland with conifer seedlings inoculated with three ectomycorrhizal fungi—impact on plant performance and ectomycorrhizal community[J]. Mycorrhiza, 2007, 17(4):337-348. [17] Ladeyn I, Plassard C, Staunton S. Mycorrhizal association of maritime pine, Pinus pinaster, with Rhizopogon roseolus has contrasting effects on the uptake from soil and root-to-shoot transfer of 137 Cs, 85 Sr and 95m Tc[J]. Journal of Environmental Radioactivity, 2008, 99(5):853-863. [18] Sepehri M, Khodaverdiloo H, Zarei M. Fungi and their role in phytoremediation of heavy metal-contaminated soils[M]. Fungi as Bioremediators;Springer, 2013:313-345. [19] Chen Y, Nara K, Wen Z, et al. Growth and photosynthetic responses of ectomycorrhizal pine seedlings exposed to elevated Cu in soils[J]. Mycorrhiza, 2015, 25(7):561-571. [20] 陈保冬, 李晓林, 朱永官. 丛枝菌根真菌菌丝体吸附重金属的潜力及特征[J]. 菌物学报, 2005, 24(2):283-291. [21] Krupa P. Inhibition of selected heavy metals translocation through mycorrhizal fungi and process dependance on the fungal symbiont[J]. Polish Journal of Environmental Studies, 1997, 6(2):35-38. [22] Joner E, Leyval C. Uptake of 109Cd by roots and hyphae of a Glomus mosseae / Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium[J]. New Phytologist, 1997, 135(2):353-360. [23] 申鸿, 刘于, 李晓林, 等. 丛枝菌根真菌(Glomus caledonium)对铜污染土壤生物修复机理初探[J]. 植物营养与肥料学报, 2005, 11(2):199-204. [24] Oudeh M, Khan M, Scullion J. Plant accumulation of potentially toxic elements in sewage sludge as affected by soil organic matter level and mycorrhizal fungi[J]. Environmental Pollution, 2002, 116(2):293-300. [25] Morselt AF, Smits WT, Limonard T. Histochemical demonstration of heavy metal tolerance in ectomycorrhizal fungi[J]. Plant and Soil, 1986, 96(3):417-420. [26] Cairney J, Chambers S. Interactions between Pisolithus tinctorius and its hosts:a review of current knowledge[J]. Mycorrhiza, 1997, 7(3):117-131. [27] Dickie AI, Reich PB. Ectomycorrhizal fungal communities at forest edges[J]. Journal of Ecology, 2005, 93(2):244-255. [28] Gebhardt S, Neubert K, Wöllecke J, et al. Ectomycorrhiza communities of red oak(Quercus rubra L. )of different age in the Lusatian lignite mining district, East Germany[J]. Mycorrhiza, 2007, 17(4):279-290. [29] O’Hanlon R, Harrington TJ. Similar taxonomic richness but different communities of ectomycorrhizas in native forests and non-native plantation forests[J]. Mycorrhiza, 2012, 22(5):371-382. [30] 陈梅梅, 陈保冬, 王新军, 等. 不同磷水平土壤接种丛枝菌根真菌对植物生长和养分吸收的影响[J]. 生态学报, 2009, 29(4):1980-1986. [31] Bücking H, Liepold E, Ambilwade P. The role of the mycorrhizal symbiosis in nutrient uptake of plants and the regulatory mechanisms underlying these transport processes[M]. Intech Open Access Publisher, 2012. [32] Kariman K, Barker SJ, Jost R, et al. A novel plant-fungus symbiosis benefits the host without forming mycorrhizal structures[J]. New Phytologist, 2014, 201(4):1413-1422. [33] Kayama M, Yamanaka T. Growth characteristics of ectomycorrhizal seedlings of Quercus glauca, Quercus salicina, and Castanopsis cuspidata planted on acidic soil[J]. Trees, 2014, 28(2):569-583. [34] Teste FP, Veneklaas EJ, Dixon KW, et al. Complementary plant nutrient-acquisition strategies promote growth of neighbour species[J]. Functional Ecology, 2014, 28(4):819-828. [35] Toler HD, Morton JB, Cumming JR. Growth and metal accumulation of mycorrhizal sorghum exposed to elevated copper and zinc[J]. Water, Air, and Soil Pollution, 2005, 164(1-4):155-172. [36] de Andrade SAL, da Silveira APD, Jorge RA, et al. Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza[J]. International journal of Phytoremediation, 2008, 10(1):1-13. [37] Jourand P, Hannibal L, Majorel C, et al. Ectomycorrhizal Pisolithus albus inoculation of Acacia spirorbis and Eucalyptus globulus grown in ultramafic topsoil enhances plant growth and mineral nutrition while limits metal uptake[J]. Journal of Plant Physiology, 2014, 171(2):164-172. [38] Colpaert JV, Wevers JH, Krznaric E, et al. How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution[J]. Annals of Forest Science, 2011, 68(1):17-24. [39] Roy S, Khasa DP, Greer CW. Combining alders, frankiae, and mycorrhizae for the revegetation and remediation of contaminated ecosystems[J]. Botany, 2007, 85(3):237-251. [40] Gonzalez-Chavez M, Carrillo-Gonzalez R, Wright S, et al. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements[J]. Environmental Pollution, 2004, 130(3):317-323. [41] Gonzalez-Guerrero M, Melville LH, Ferrol N, et al. Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices[J]. Canadian Journal of Microbiology, 2008, 54(2):103-110. [42] Krupa P, Kozdrój J. Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine(Pinus sylvestris L. )seedlings[J]. Water, Air, and Soil Pollution, 2007, 182(1-4):83-90. [43] Acosta J, Faz A, Kalbitz K, et al. Partitioning of heavy metals over different chemical fraction in street dust of Murcia(Spain)as a basis for risk assessment[J]. Journal of Geochemical Exploration, 2014, 144(part B):298-305. |