[1] Markovac J, Goldstein GW .Picomolar concentrations of lead stimulate brain protein kinase C[J]. Nature, 1988, 334(6177):71-73. [2] Bagchi D, Bagchi M, Stohs SJ, et al.Free radicals and grape seed proanthocyanidin extract:importance in human health and disease prevention[J]. Toxicology, 2000, 148(2):187-197. [3] United States Environmental Protection Agency. Reducing health risks worldwide:Report No EPA-160-K-98-001. Washington D. C. 1998. [4] Kayhanian M.Trend and concentrations of legacy lead(Pb)in highway runoff[J]. Environmental Pollution, 2012, 160(1):169-177. [5] Huang PC, Su PH, Chen HY, et al.Childhood blood lead levels and intellectual development after ban of leaded gasoline in Taiwan:a 9-year prospective study[J]. Environment International 2012, 40(2):88-96. [6] Nigg JT, Knottnerus GM, Martel MM, et al.Low blood lead levels associated with clinically diagnosed attention-deficit/hyperactivity disorder and mediated by weak cognitive control[J]. Biological Psychiatry, 2008, 63(3):325-331. [7] Griffiths C, Klemick H, Massey M, et al.US environmental protection agency valuation of surface water quality improvements[J]. Review of Environmental Economics & Policy, 2012, 6(1):130-146. [8] Saidur MR, Aziz AR, Basirun WJ.Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection:A review[J]. Biosens Bioelectron, 2017, 90:125-139. [9] Yang L, Saavedra SS.Chemical sensing using sol-gel derived planar waveguides and indicator phases[J]. Analytical Chemistry, 1995, 67(8):1307-1314. [10] Ewing GW.Analytical Instrumentation Handbook[M]. 2rd ed. New York:Marcel Dekker, 1997. [11] Liu HW, Jiang SJ, Liu SH.Determination of cadmium, mercury and lead in seawater by electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta B, 1999, 54(9):1367-1375. [12] Rebôcho J, Carvalho ML, Marques AF, et al.Lead post-mortem intake in human bones of ancient populations by(109)Cd-based X-ray fluorescence and EDXRF[J]. Talanta, 2006, 70(5):957-961. [13] Zeng W, Chen Y, Cui H, et al.Single-column method of ion chromatography for the determination of common cations and some transition metals[J]. J Chromatogr A, 2006, 1118(1):68-72. [14] Jamali MR, Assadi Y, Shemirani F, et al.Synthesis of salicylaldehyde-modified mesoporous silica and its application as a new sorbent for separation, preconcentration and determination of uranium by inductively coupled plasma atomic emission spectrometry[J]. Anal Chim Acta, 2006, 579(1):68-73. [15] Drummond TG, Hill MG, Barton JK.Electrochemical DNA sensors[J]. Nature Biotechnology, 2003, 21(10):1192-1199. [16] Ronkainen NJ, H Brian H, Heineman WR. Electrochemical biosensors[J]. Chem Soc Rev, 2010, 39(5):1747-1763. [17] Kyrisoglou C, Economou A, Efstathiou CE.Bismuth-coated iridium microwire electrode for the determination of trace metals by anodic stripping voltammetry[J]. Electroanalysis, 2012, 24(9):1825-1832. [18] Lu Y, Liang X, Niyungekoa C, et al.A review of the identification and detection of heavy metal ions in the environment by voltammetry[J]. Talanta, 2017, 178:324-338. [19] Bowler R, Davies TJ, And MEH, et al.Electrochemical cell for surface analysis[J]. Analytical Chemistry, 2005, 77(6):1916-1919. [20] Marcoux LS, Prater KB, Prater BG, et al.A nonaqueous carbon paste electrode[J]. Anal Chem, 2002, 37(11):1446-1447. [21] Zittel HE, Miller FJ, Chem A.A glassy-carbon electrode for voltammetry[J]. Analytical Chemistry, 1965, 37(2):200-203. [22] Wang Z, Wang H, Zhang Z, et al.Electrochemical determination of lead and cadmium in rice by adisposable bismuth/electrochemically reduced graphene/ionic liquid composite modified screen-printed electrode[J]. Sensors & Actuators B, 2014, 199:7-14. [23] Robinson JE, Heineman WR, Sagle LB, et al.Carbon nanofiber electrode array for the detection of lead[J]. Electrochemistry Communications, 2016, 73:89-93. [24] Liu HJ, Qu LN, Hu S, et al.Sensitive and simple electrochemical detection of lead(II)with carbon ionic liquid electrode[J]. Journal of the Chinese Chemical Society, 2010, 57(6):1367-1373. [25] Yano T.Electrochemical behavior of highly conductive boron-doped diamond electrodes for oxygen reduction in acid solution[J]. J Electrochem Soc, 1999, 146(3):1081-1087. [26] Roohollah TK, Craig EB, Ji X, et al.Electroanalytical determination of cadmium(II)and lead(II)using an in-situ bismuth film modified edge plane pyrolytic graphite electrode[J]. Analytical Sciences, 2007, 23:283-289. [27] Castañeda MT, Pérez B, Pumera M, et al.Sensitive stripping voltammetry of heavy metals by using a composite sensor based on a built-in bismuth precursor[J]. Analyst, 2005, 130(6):971-976. [28] Potlako JM, Azeez OI, Nonhlangabezo M, et al.Electrochemical co-detection of As(III), Hg(II)and Pb(II)on a bismuth modified exfoliated graphite electrode[J]. Talanta, 2016, 153:99-106. [29] Wang Z, Liu E.Graphene ultrathin film electrode for detection of lead ions in acetate buffer solution[J]. Talanta, 2013, 103(2):47-55. [30] Demetriades D, Economou A, Voulgaropoulos A.A study of pencil-lead bismuth-film electrodes for the determination of trace metals by anodic stripping voltammetry[J]. Anal Chim Acta, 2004, 519(2):167-172. [31] Pauliukaitė R.Characterization and application of bismuth-film modified carbon film electrodes[J]. Electroanalysis, 2005, 17(15-16):1354-1359. [32] Hadi M, Rouhollahi A, Yousefi M.Application of nanocrystalline graphite-like pyrolytic carbon film electrode for voltammetric sensing of lead[J]. Journal of Applied Electrochemistry, 2011, 42(3):179-187. [33] Afkhami A, Ghaedi H, Madrakian T, et al.Highly sensitive simultaneous electrochemical determination of trace amounts of Pb(II)and Cd(II)using a carbon paste electrode modified with multi-walled carbon nanotubes and a newly synthesized Schiff base[J]. Electrochimica Acta, 2013, 89:377-386. [34] McCreery RL, Bard AJ. Eletroanalytical Chemistry[M]. New York:Marcel Dekker, 1991. [35] Kaushika A, Khan R, Solanki PR, et al.Iron oxide nanoparticles-chitosan composite based glucose biosensor[J]. Biosens Bioelectron, 2012, 24(4):676-683. [36] Zuman P.Stripping Analysis:Principles, instrumentation and applications[J]. Microchem J, 1986, 33(1):135-136. [37] Zhu L, Xu L, Huang B, et al.Simultaneous determination of Cd(II)and Pb(II)using square wave anodic stripping voltammetry at a gold nanoparticle-graphene-cysteine composite modified bismuth film electrode[J]. Electrochimica Acta, 2014, 115(3):471-477. [38] Kaur B, Srivastava R, Satpati B.Ultratrace detection of toxic heavy metal ions found in water bodies using hydroxyapatite supported nanocrystalline ZSM-5 modified electrodes[J]. New Journal of Chemistry, 2015, 39(7):5137-5149. [39] Wang J, Lu J, Hocevar SB, et al.Bismuth-coated carbon electrodes for anodic stripping voltammetry[J]. Analytical Chemistry, 2000, 72(14):3218-3222. [40] Zhou H, Hou H, Dai L, et al.Preparation of dendritic bismuth film electrodes and their application for detection of trace Pb(II)and Cd(II)[J]. Chinese Journal of Chemical Engineering, 2016, 24(3):410-414. [41] Yantasee W, Hongsirikarn K, Warner CL, et al.Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles[J]. Analyst, 2008, 133(3):348-355. ?[42]Liu MC, Zhao GH, Tang YT, et al. A simple, stable and picomole level lead sensor fabricated on DNA-based carbon hybridized TiO2 nanotube arrays[J]. Environmental Science & Technology, 2010, 44(11):4241-4246. [43] Wei Y, Gao C, Meng FL.SnO2/Reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II):An interesting favorable mutual interference[J]. The Journal of Physical Chemistry C, 2012, 116(1):1034-1041. [44] Liu ZG, Sun YF, Chen WK, et al.Facet-dependent stripping behavior of Cu2O microcrystals toward lead Ions:A rational design for the determination of lead ions[J]. Small 2015, 11(21):2493-2498. [45] Li PH, Li YX, Chen SH, et al.Sensitive and interference-free electrochemical determination of Pb(II)in wastewater using porous Ce-Zr oxide nanospheres[J]. Sensors & Actuators B, 2018, 257:1009-1020. [46] Xu X, Ray R, Gu Y, et al.Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004, 126(40):12736-12737. [47] Wang J, Zhang W, Yue X, et al.One-pot synthesis of multifunctional magnetic ferrite-MoS2-carbondot nanohybrid adsorbent for efficient Pb(II)removal[J]. Journal of Materials Chemistry A, 2016, 4(10):3893-3900. [48] Li L, Liu D, Shi A, et al.Simultaneous stripping determination of cadmium and lead ionsbased on the N-doped carbon quantum dots-graphene oxide hybrid[J]. Sensors & Actuators B, 2018, 255:1762-1770. [49] Simpson A, Pandey RR, Charles CC, et al.Fabrication characterization and potential applications of carbon nanoparticles in the detection of heavy metal ions in aqueous media[J]. Carbon, 2018, 127:122-130. [50] Iijima S.Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348):56-58. [51] Novoselov KS, Geim AK, Morozov SV, et al.Two-dimensional gas of massless Dirac fermions in grapheme[J]. Nature, 2005, 438(7065):197-200. [52] Priya T, Dhanalakshmi N, Thennarasu S, et al.A novel voltammetric sensor for the simultaneous detection of Cd2+ and Pb2+ using graphene oxide/κ-carrageenan/L-cysteine nanocomposite[J]. Carbohydrate Polymers, 2018, 182:199-206. [53] Ping J, Wang Y, Wu J, et al.Development of an electrochemically reduced graphene oxide modified disposable bismuth film electrode and its application for stripping analysis of heavy metals in milk[J]. Food Chemistry, 2014, 151(4):65-71. [54] Liu FM, Zhang Y, Yin W, et al.A high-selectivity electrochemical sensor for ultra-trace lead(II)detection based on a nanocomposite consisting of nitrogen-doped graphene/gold nanoparticles functionalized with ETBD and Fe3O4@TiO2 core-shell nanoparticles[J]. Sensors & Actuators B, 2016, 242:889-896. [55] Muralikrishna S, Nagaraju DH, Balakrishna RG, et al.Hydrogels of polyaniline with graphene oxide for highly sensitive electrochemical determination of lead ions[J]. Anal Chim Acta, 2017, 990:67-77. [56] Xue S, Jing P, Xu W.Hemin on graphene nanosheets functionalized with flower-like MnO2 and hollow AuPd for the electrochemical sensing lead ion based on the specific DNAzyme[J]. Biosens Bioelectron, 2016, 86:958-965. [57] Yantasee W, Deibler LA, Fryxell GE, et al.Screen-printed electrodes modified with functionalized mesoporous silica for voltammetric analysis of toxic metal ions[J]. Electrochemistry Communications, 2005, 7(11):1170-1176. [58] Yuan Y, Zhao G, Liu G.A sensitive electrochemical sensor using a mesoporous carbon and nafion composite for the simultaneous detection of cadmium and lead[J]. International Journal of Electrochemical Science, 2017, 12:5378-5391. [59] Oztekin Y, Ramanaviciene A, Ramanavicius A.Electrochemical copper(II)sensor based on self-assembled 4-amino-6-hydroxy-2-mercaptopyrimidine monohydrate[J]. Sensors & Actuators B:Chemical, 2011, 155(2):612-617. [60] Wu Y, Li NB, Luo HQ.Simultaneous measurement of Pb, Cd and Zn using differential pulse anodic stripping voltammetry at a bismuth/poly(p-aminobenzene sulfonic acid)film electrode[J]. Sensors & Actuators B, 2008, 133(2):677-681. [61] Fatima ES, Ouarzane A, Rhazi ME.Electrochemical detection of lead(II)at bismuth/Poly(1, 8-diaminonaphthalene)modified carbon paste electrode[J]. Arabian Journal of Chemistry, 2017, 10:596-603. [62] Dai H, Wang N, Wang D, et al.An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of Cd(II)and Pb(II)[J]. Chemical Engineering Journal, 2016, 299:150-155. [63] Promphet N, Rattanarat P, Rangkupan R, et al.An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium[J]. Sensors & Actuators B, 2015, 207:526-534. [64] Zhang H, Jiang B, Xiang Y, et al.DNAzyme-based highly sensitive electronic detection of lead via quantum dot-assembled amplification labels[J]. Biosens Bioelectron, 2011, 28(1):135-138. [65] Tang S, Wei L, Fang G, et al.A novel electrochemical sensor for lead ion based on cascade DNA and quantum dots amplification[J]. Electrochimica Acta, 2014, 134(21):1-7. [66] Zeng G, Zhu Y, Zhang Y, et al.Electrochemical DNA sensing strategy based on strengthening electronic conduction and a signal amplifier carrier of nanoAu/MCN composited nanomaterials for sensitive lead detection[J]. Environmental Science Nano, 2016, 3(6):1504-1509. [67] Zhou Y, Lin T, Zeng G, et al.Label free detection of lead using impedimetric sensor based on ordered mesoporous carbon-gold nanoparticles and DNAzyme catalytic beacons[J]. Talanta, 2016, 146:641-647. [68] Zhang C, Lai C, Zeng G, et al.Nanoporous Au-based chronocoulometric aptasensor for amplified detection of Pb2+ using DNAzyme modified with Au nanoparticles[J]. Biosens Bioelectron, 2016, 81:61-67. [69] Tang S, Tong P, Li H, et al.Ultrasensitive electrochemical detection of Pb2+ based on rolling circle amplification and quantum dots tagging[J]. Biosens Bioelectron, 2013, 42(12):608-611. [70] Li Y, Liu XR, Ning XH, et al.An ionic liquid supported CeO2 nanoparticles-carbon nanotubes composite-enhanced electrochemical DNA-based sensor for the detection of Pb2+[J]. Journal of Pharmaceutical Analysis, 2011, 1(4):258-263. [71] Li Y, Wang C, Zhu Y, et al.Fully integrated graphene electronic biosensor for label-free detection of lead(II)ion based on G-quadruplex structure-switching[J]. Biosens Bioelectron, 2017, 89(2):758-763. [72] Zhu Y, Zeng G, Zhang Y, et al.Highly sensitive electrochemical sensor using a MWCNTs/GNPs-modified electrode for lead(II)detection based on Pb2+-induced G-rich DNA conformation[J]. Analyst, 2014, 139(19):5014-5020. |