[1] |
Larkin JC, Oppenheimer DG, Pollock S, et al. Arabidopsis GLA-BROUS1 gene requires downstream sequences for function[J]. Plant Cell, 1993,2:1739-1748.
|
[2] |
Tominaga-Wada R, Ishida T, Wada T. New insights into the mechanism of development of Arabidopsis root hairs and trichomes[J]. International Review of Cell and Molecular Biology, 2011,286:67-106.
doi: 10.1016/B978-0-12-385859-7.00002-1
URL
|
[3] |
Pattanaik S, Patra B, Singh SK, et al. An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis[J]. Frontiers in Plant Science, 2014,259:2-8.
|
[4] |
Hülskamp M, Misra S, Jürgens G. Genetic dissection of trichome cell development in Arabidopsis[J]. Cell, 1994,76:555-566.
doi: 10.1016/0092-8674(94)90118-x
URL
pmid: 8313475
|
[5] |
Glover BJ, Martin C. Specification of epidermal cell morphology[J]. Advance in Botanical Research, 2000,31:193-217.
|
[6] |
Ishida T, Kurata T, Okada K, et al. A genetic regulatory network in the development of trichomes and root hairs[J]. Annual Review Plant Biology, 2008,59:365-386.
doi: 10.1146/annurev.arplant.59.032607.092949
URL
|
[7] |
Oppenheimer DG, Herman PL, Sivakumaran S, et al. A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules[J]. Cell, 1991,67(3):483-493.
URL
pmid: 1934056
|
[8] |
Larkin JC, Oppenheimer DG, Lloyd AM. Roles of the GLABROUS1 and TRANSPARENT TESA GLABRA genes in Arabidopsis trichome development[J]. Plant Cell, 1994,6:1065-1076.
doi: 10.1105/tpc.6.8.1065
URL
pmid: 12244266
|
[9] |
Koornneef M, Dellaert WM, Van der Veen JH. EMS and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana(L.)[J]. Mutation Research-Review Mutation Research, 1982,93:109-123.
|
[10] |
Szymanski DB, Lloyd AM, Marks MD. Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis[J]. Trends in Plant Science, 2000,5:214-219.
doi: 10.1016/s1360-1385(00)01597-1
URL
pmid: 10785667
|
[11] |
Wenger JP, Marks MD. E2F and retinoblastoma related proteins may regulate GL1 expression in developing Arabidopsis trichomes[J]. Plant Signaling & Behavior, 2008,3:420-422.
doi: 10.4161/psb.3.6.5471
URL
pmid: 19704586
|
[12] |
Wang R, Liu X, Liang S, et al. A subgroup of MATE transporter genes regulates hypocotyl cell elongation in Arabidopsis[J]. Journal of Experimental Botany, 2015,66:6327-6343.
doi: 10.1093/jxb/erv344
URL
pmid: 26160579
|
[13] |
Martinez-Zapater JM. Genetic analysis of variegated mutants in Arabidopsis[J]. Journal of Heredity, 1993,84:138-140.
doi: 10.1093/oxfordjournals.jhered.a111298
URL
|
[14] |
Dubois M, Selden K, Bediée A, et al. SIAMESE-RELATED1 is regulated posttranslationally and participates in repression of leaf growth under moderate drought[J]. Plant Physiology, 2018,176:2834-2850.
doi: 10.1104/pp.17.01712
URL
pmid: 29472278
|
[15] |
Johnson HB. Plant pubescence:an ecological perspective[J]. Botanical Review, 1975,41:233-253.
doi: 10.1007/BF02860838
URL
|
[16] |
Yoshida T, Fujita Y, Maruyama K, et al. Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinase in abscisic acid signaling in response to osmotic stress[J]. Plant Cell and Environment, 2015,38:35-49.
doi: 10.1111/pce.2015.38.issue-1
URL
|
[17] |
Hwang KH, Susila Z, Nasim J, et al. Arabidopsis ABF3 and ABF4 transcription factors act with the NF-YC complex to regulate SOC1 expression and mediate drought-accelerated flowering[J]. Molecular Plant, 2019,12:489-505.
doi: 10.1016/j.molp.2019.01.002
URL
pmid: 30639313
|
[18] |
Bicknell AA, Ricci EP. When mRNA translation meets decay[J]. Biochemical Society Transactions, 2017,45:339-351.
doi: 10.1042/BST20160243
URL
pmid: 28408474
|
[19] |
Bahrami S, Drabløs F. Gene regulation in the immediate-early response process[J]. Advances in Biological Regulation, 2016,62:37-49.
doi: 10.1016/j.jbior.2016.05.001
URL
pmid: 27220739
|