生物技术通报 ›› 2023, Vol. 39 ›› Issue (2): 51-62.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0518
收稿日期:
2022-04-27
出版日期:
2023-02-26
发布日期:
2023-03-07
作者简介:
周晞雯,女,硕士研究生,研究方向:果蔬采后生理与分子生物学;E-mail: 基金资助:
ZHOU Xi-wen(), CHENG Ke, ZHU Hong-liang()
Received:
2022-04-27
Published:
2023-02-26
Online:
2023-03-07
摘要:
生物体内的RNA因氢键等作用配对折叠形成复杂的二级结构及三级结构,并根据环境产生动态变化,由此行使功能。植物中的基因表达调控及配体感应都与RNA的结构相关,RNA结构也被认为是转录后调控的一项影响因素,RNA的结构对与之互作的蛋白的结构和功能产生影响,因此研究RNA功能过程中解析RNA结构尤为关键。目前,RNA二级结构的探测实验方法从X-射线经过酶切及化学探针标记,发展至结合高通量测序即可建构模型。此外,机器学习等方法也为RNA结构的探测提供了新的思路。本文综述了影响体内RNA结构的因素及近年来用于植物体内RNA结构预测的方法,讨论了现有方法的应用限制下对RNA二级结构预测新方法开发的意义及存在的问题,展望计算机预测方法与实验方法未来的发展趋势,旨为后续RNA结构相关研究提供方法参考。
周晞雯, 成柯, 朱鸿亮. 植物体内RNA二级结构探测方法的研究进展[J]. 生物技术通报, 2023, 39(2): 51-62.
ZHOU Xi-wen, CHENG Ke, ZHU Hong-liang. Research Progress in the Approaches to in vivo RNA Secondary Structure Profiling in Plants[J]. Biotechnology Bulletin, 2023, 39(2): 51-62.
试剂 Reagents | 体内或体外 In vivo or in vitro | 标记位点 Targeted sites | 方法 Methods | 材料种类 Species |
---|---|---|---|---|
DMS | 体内&体外 In vivo & in vitro | C N3,A N1,U N7 | DMS-seq,Structure-seq,DMS-MaPseq,Dance-MAP | 拟南芥 Arabidopsis thaliana[ 大肠杆菌 Escherichia coli[ 酵母细胞 Saccharomyces[ 创伤弧菌 Vibrio vulnificus[ |
NAI, 1M7, NMIA, BzCN, NAI-N3 | 体内&体外 In vivo & in vitro | 2'-OH | SHAPE-seq, icSHAPE, SHAPE-MaPseq | 斑马鱼 Danio rerio 小鼠 Mus musculus 拟南芥 Arabidopsis thaliana 水稻 Oryza sativa[ |
甲基乙二醛 Methylglyoxal | 体内&体外 In vivo & in vitro | C N3,4-NH2,A N1,6-NH2,G N1,2-NH2 | RIC-seq | 小鼠 Mus musculus[ 枯草芽孢杆菌Bacillus subtilis 大肠杆菌 Escherichia coli[ |
EDC | 体内&体外 In vivo & in vitro | G N1,U N3 | Structure-seq | 小鼠 Mus musculus[ |
PDS, NAI | 体外 In vitro | rG4-seq | HeLa细胞 HeLa cells 大肠杆菌 Escherichia coli 拟南芥 Arabidopsis thaliana[ | |
CMCT | 体外 In vitro | U N3,G N1 | CIRC-seq | 小鼠 Mus musculus[ |
CMCT, DMS | 体外 In vitro | C N3,A N1,U N7, G N1 | CIRS-seq | 小鼠 Mus musculus[ |
RNase V1, RNase S | 体外 In vitro | PARS | 酵母 Saccharomyces[ 人体淋巴细胞Human lymphoblastoid cells[ | |
RNase P1 | 体外 In vitro | Fragseq | 小鼠 Mus musculus[ | |
RNase V1 and RNase One | 体外 In vitro | ssRNA-seq, dsRNA-seq,PIP-seq | 果蝇Drosophila melanogaster 秀丽隐杆线虫Caenorhabditis elegans[ 拟南芥 Arabidopsis thaliana[ |
表1 用于RNA标记实验的酶和探针
Table 1 Probes and enzymes for RNA labeling
试剂 Reagents | 体内或体外 In vivo or in vitro | 标记位点 Targeted sites | 方法 Methods | 材料种类 Species |
---|---|---|---|---|
DMS | 体内&体外 In vivo & in vitro | C N3,A N1,U N7 | DMS-seq,Structure-seq,DMS-MaPseq,Dance-MAP | 拟南芥 Arabidopsis thaliana[ 大肠杆菌 Escherichia coli[ 酵母细胞 Saccharomyces[ 创伤弧菌 Vibrio vulnificus[ |
NAI, 1M7, NMIA, BzCN, NAI-N3 | 体内&体外 In vivo & in vitro | 2'-OH | SHAPE-seq, icSHAPE, SHAPE-MaPseq | 斑马鱼 Danio rerio 小鼠 Mus musculus 拟南芥 Arabidopsis thaliana 水稻 Oryza sativa[ |
甲基乙二醛 Methylglyoxal | 体内&体外 In vivo & in vitro | C N3,4-NH2,A N1,6-NH2,G N1,2-NH2 | RIC-seq | 小鼠 Mus musculus[ 枯草芽孢杆菌Bacillus subtilis 大肠杆菌 Escherichia coli[ |
EDC | 体内&体外 In vivo & in vitro | G N1,U N3 | Structure-seq | 小鼠 Mus musculus[ |
PDS, NAI | 体外 In vitro | rG4-seq | HeLa细胞 HeLa cells 大肠杆菌 Escherichia coli 拟南芥 Arabidopsis thaliana[ | |
CMCT | 体外 In vitro | U N3,G N1 | CIRC-seq | 小鼠 Mus musculus[ |
CMCT, DMS | 体外 In vitro | C N3,A N1,U N7, G N1 | CIRS-seq | 小鼠 Mus musculus[ |
RNase V1, RNase S | 体外 In vitro | PARS | 酵母 Saccharomyces[ 人体淋巴细胞Human lymphoblastoid cells[ | |
RNase P1 | 体外 In vitro | Fragseq | 小鼠 Mus musculus[ | |
RNase V1 and RNase One | 体外 In vitro | ssRNA-seq, dsRNA-seq,PIP-seq | 果蝇Drosophila melanogaster 秀丽隐杆线虫Caenorhabditis elegans[ 拟南芥 Arabidopsis thaliana[ |
[1] |
Qian XY, Zhao JY, Yeung PY, et al. Revealing lncRNA structures and interactions by sequencing-based approaches[J]. Trends Biochem Sci, 2019, 44(1): 33-52.
doi: S0968-0004(18)30197-X pmid: 30459069 |
[2] |
Sherwood AV, Henkin TM. Riboswitch-mediated gene regulation: novel RNA architectures dictate gene expression responses[J]. Annu Rev Microbiol, 2016, 70: 361-374.
doi: 10.1146/annurev-micro-091014-104306 pmid: 27607554 |
[3] |
Song XW, Li Y, Cao XF, et al. MicroRNAs and their regulatory roles in plant-environment interactions[J]. Annu Rev Plant Biol, 2019, 70: 489-525.
doi: 10.1146/annurev-arplant-050718-100334 pmid: 30848930 |
[4] |
Mukherjee S, Murata A, Ishida R, et al. HT-SELEX-based identification of binding pre-miRNA hairpin-motif for small molecules[J]. Mol Ther Nucleic Acids, 2021, 27: 165-174.
doi: 10.1016/j.omtn.2021.11.021 URL |
[5] |
Jang B, Jang H, Kim H, et al. Protein-RNA interaction guided chemical modification of Dicer substrate RNA nanostructures for superior in vivo gene silencing[J]. J Control Release, 2022, 343: 57-65.
doi: 10.1016/j.jconrel.2021.11.009 URL |
[6] |
Tang Y, Assmann SM, Bevilacqua PC. Protein structure is related to RNA structural reactivity in vivo[J]. J Mol Biol, 2016, 428(5 PtA): 758-766.
doi: 10.1016/j.jmb.2015.11.012 URL |
[7] |
Ruiz-Ferrer V, Voinnet O. Roles of plant small RNAs in biotic stress responses[J]. Annu Rev Plant Biol, 2009, 60: 485-510.
doi: 10.1146/annurev.arplant.043008.092111 pmid: 19519217 |
[8] |
Huston NC, Wan H, Strine MS, et al. Comprehensive in vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms[J]. Mol Cell, 2021, 81(3): 584-598.e5.
doi: 10.1016/j.molcel.2020.12.041 URL |
[9] |
Wan Y, Qu K, Zhang QC, et al. Landscape and variation of RNA secondary structure across the human transcriptome[J]. Nature, 2014, 505(7485): 706-709.
doi: 10.1038/nature12946 URL |
[10] |
Han B, Xi W, Hong YT, et al. Mutual regulation of noncoding RNAs and RNA modifications in psychopathology: potential therapeutic targets for psychiatric disorders?[J]. Pharmacol Ther, 2022, 237: 108254.
doi: 10.1016/j.pharmthera.2022.108254 URL |
[11] |
Rajendren S, Karijolich J. The impact of RNA modifications on the biology of DNA virus infection[J]. Eur J Cell Biol, 2022, 101(3): 151239.
doi: 10.1016/j.ejcb.2022.151239 URL |
[12] | 李金珂, 袁焰. N6-甲基腺嘌呤RNA修饰在泌尿系统肿瘤中的研究进展[J]. 分子诊断与治疗杂志, 2021, 13(10): 1726-1730. |
Li JK, Yuan Y. The advance of N6-methyladenosine RNA modification in urological cancers[J]. J Mol Diagn Ther, 2021, 13(10): 1726-1730. | |
[13] |
Lewis CJT, Pan T, Kalsotra A. RNA modifications and structures cooperate to guide RNA-protein interactions[J]. Nat Rev Mol Cell Biol, 2017, 18(3): 202-210.
doi: 10.1038/nrm.2016.163 URL |
[14] |
Tomezsko P, Swaminathan H, Rouskin S. Viral RNA structure analysis using DMS-MaPseq[J]. Methods, 2020, 183: 68-75.
doi: 10.1016/j.ymeth.2020.04.001 pmid: 32251733 |
[15] |
Rouskin S, Zubradt M, Washietl S, et al. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo[J]. Nature, 2014, 505(7485): 701-705.
doi: 10.1038/nature12894 URL |
[16] |
Nshogozabahizi JC, Aubrey KL, Ross JA, et al. Applications and limitations of regulatory RNA elements in synthetic biology and biotechnology[J]. J Appl Microbiol, 2019, 127(4): 968-984.
doi: 10.1111/jam.14270 pmid: 30927378 |
[17] |
Vu LD, Gevaert K, de Smet I. Feeling the heat: searching for plant thermosensors[J]. Trends Plant Sci, 2019, 24(3): 210-219.
doi: S1360-1385(18)30266-8 pmid: 30573309 |
[18] |
Yamagami R, Sieg JP, Assmann SM, et al. Genome-wide analysis of the in vivo tRNA structurome reveals RNA structural and modification dynamics under heat stress[J]. Proc Natl Acad Sci USA, 2022, 119(25): e2201237119.
doi: 10.1073/pnas.2201237119 pmid: 35696576 |
[19] |
Yang ML, Zhu P, Cheema J, et al. In vivo single-molecule analysis reveals COOLAIR RNA structural diversity[J]. Nature, 2022, 609(7926): 394-399.
doi: 10.1038/s41586-022-05135-9 URL |
[20] |
Liu ZS, Liu Q, Yang XF, et al. In vivo nuclear RNA structurome reveals RNA-structure regulation of mRNA processing in plants[J]. Genome Biol, 2021, 22(1): 11.
doi: 10.1186/s13059-020-02236-4 URL |
[21] | Xue Y, Gracia B, Herschlag D, et al. Visualizing the formation of an RNA folding intermediate through a fast highly modular secondary structure switch[J]. Nat Commun, 2016, 7: ncomms11768. |
[22] |
Li F, Zheng Q, Vandivier LE, et al. Regulatory impact of RNA secondary structure across the Arabidopsis transcriptome[J]. Plant Cell, 2012, 24(11): 4346-4359.
doi: 10.1105/tpc.112.104232 URL |
[23] |
Neve J, Patel R, Wang ZQ, et al. Cleavage and polyadenylation: ending the message expands gene regulation[J]. RNA Biol, 2017, 14(7): 865-890.
doi: 10.1080/15476286.2017.1306171 pmid: 28453393 |
[24] |
Wu XB, Bartel DP. Widespread influence of 3'-end structures on mammalian mRNA processing and stability[J]. Cell, 2017, 169(5): 905-917.e11.
doi: S0092-8674(17)30490-7 pmid: 28525757 |
[25] |
Zydowicz-Machtel P, Swiatkowska A, Popenda Ł, et al. Variants of the 5'-terminal region of p53 mRNA influence the ribosomal scanning and translation efficiency[J]. Sci Rep, 2018, 8(1): 1533.
doi: 10.1038/s41598-018-20010-2 pmid: 29367734 |
[26] |
Yang XF, Yu HP, Sun WQ, et al. Wheat in vivo RNA structure landscape reveals a prevalent role of RNA structure in modulating translational subgenome expression asymmetry[J]. Genome Biol, 2021, 22(1): 326.
doi: 10.1186/s13059-021-02549-y URL |
[27] |
Spitale RC, Flynn RA, Zhang QC, et al. Structural imprints in vivo decode RNA regulatory mechanisms[J]. Nature, 2015, 519(7544): 486-490.
doi: 10.1038/nature14263 URL |
[28] |
Jia GF, Fu Y, He C. Reversible RNA adenosine methylation in biological regulation[J]. Trends Genet, 2013, 29(2): 108-115.
doi: 10.1016/j.tig.2012.11.003 pmid: 23218460 |
[29] | 邹永新, 龚瑶琴. 影响RNA剪接的基因变异[J]. 遗传, 2017, 39(3): 200-207. |
Zou YX, Gong YQ. Aberrant RNA splicing as the molecular basis of some pathogenic variants[J]. Hereditas, 2017, 39(3): 200-207. | |
[30] |
Ding YL, Tang Y, Kwok CK, et al. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features[J]. Nature, 2014, 505(7485): 696-700.
doi: 10.1038/nature12756 URL |
[31] |
Van Treeck B, Parker R. Emerging roles for intermolecular RNA-RNA interactions in RNP assemblies[J]. Cell, 2018, 174(4): 791-802.
doi: S0092-8674(18)30948-6 pmid: 30096311 |
[32] |
Chao JA, Williamson JR. Joint X-ray and NMR refinement of the yeast L30e-mRNA complex[J]. Structure, 2004, 12(7): 1165-1176.
pmid: 15242593 |
[33] |
Bermejo GA, Clore GM, Schwieters CD. Improving NMR structures of RNA[J]. Structure, 2016, 24(5): 806-815.
doi: S0969-2126(16)00085-X pmid: 27066747 |
[34] |
Bermejo GA, Clore GM, Schwieters CD. Smooth statistical torsion angle potential derived from a large conformational database via adaptive kernel density estimation improves the quality of NMR protein structures[J]. Protein Sci, 2012, 21(12): 1824-1836.
doi: 10.1002/pro.2163 pmid: 23011872 |
[35] |
Rouda SS, Skordalakes E. Structure of the RNA-binding domain of telomerase: implications for RNA recognition and binding[J]. Structure, 2007, 15(11): 1403-1412.
pmid: 17997966 |
[36] |
Kertesz M, Wan Y, Mazor E, et al. Genome-wide measurement of RNA secondary structure in yeast[J]. Nature, 2010, 467(7311): 103-107.
doi: 10.1038/nature09322 URL |
[37] |
Hulscher RM, Bohon J, Rappé MC, et al. Probing the structure of ribosome assembly intermediates in vivo using DMS and hydroxyl radical footprinting[J]. Methods, 2016, 103: 49-56.
doi: 10.1016/j.ymeth.2016.03.012 pmid: 27016143 |
[38] |
Umeyama T, Ito T. DMS-seq for in vivo genome-wide mapping of protein-DNA interactions and nucleosome centers[J]. Cell Rep, 2017, 21(1): 289-300.
doi: S2211-1247(17)31310-4 pmid: 28978481 |
[39] |
Olson SW, Turner AMW, Arney JW, et al. Discovery of a large-scale, cell-state-responsive allosteric switch in the 7SK RNA using DANCE-MaP[J]. Mol Cell, 2022, 82(9): 1708-1723.e10.
doi: 10.1016/j.molcel.2022.02.009 URL |
[40] |
Sas-Chen A, Thomas JM, Matzov D, et al. Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping[J]. Nature, 2020, 583(7817): 638-643.
doi: 10.1038/s41586-020-2418-2 URL |
[41] |
Mitchell D, Ritchey L E. Glyoxals as in vivo RNA structural probes of guanine base-pairing[J]. RNA, 2018, 24(1): 114-24.
doi: 10.1261/rna.064014.117 pmid: 29030489 |
[42] |
Wang PY, Sexton AN, Culligan WJ, et al. Carbodiimide reagents for the chemical probing of RNA structure in cells[J]. RNA, 2019, 25(1): 135-146.
doi: 10.1261/rna.067561.118 pmid: 30389828 |
[43] |
Dumetz F, Chow EYC, Harris LM, et al. G-quadruplex RNA motifs influence gene expression in the malaria parasite Plasmodium falciparum[J]. Nucleic Acids Res, 2021, 49(21): 12486-12501.
doi: 10.1093/nar/gkab1095 URL |
[44] |
Yang XF, Cheema J, Zhang YY, et al. RNA G-quadruplex structures exist and function in vivo in plants[J]. Genome Biol, 2020, 21(1): 226.
doi: 10.1186/s13059-020-02142-9 URL |
[45] |
Andrade JM, dos Santos RF, Arraiano CM. RNA structure analysis by chemical probing with DMS and CMCT[J]. Methods Mol Biol, 2020, 2106: 209-223.
doi: 10.1007/978-1-0716-0231-7_13 pmid: 31889260 |
[46] |
Zhao XK, Xing PW, et al. Focal amplifications are associated with chromothripsis events and diverse prognoses in gastric cardia adenocarcinoma[J]. Nat Commun, 2021, 12(1): 6489.
doi: 10.1038/s41467-021-26745-3 URL |
[47] |
Incarnato D, Neri F, et al. Genome-wide profiling of mouse RNA secondary structures reveals key features of the mammalian transcriptome[J]. Genome Biol, 2014, 15(10): 491.
pmid: 25323333 |
[48] |
Underwood JG, Uzilov AV, Katzman S, et al. FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing[J]. Nat Methods, 2010, 7(12): 995-1001.
doi: 10.1038/nmeth.1529 pmid: 21057495 |
[49] | Foley SW, Gregory BD. Protein interaction profile sequencing(PIP-seq)[J]. Curr Protoc Mol Biol, 2016, 116: 27.5.1-27.5.15. |
[50] |
Anderson SJ, Willmann MR, Gregory BD. Protein interaction profile sequencing(PIP-seq)in plants[J]. Curr Protoc Plant Biol, 2016, 1(1): 163-183.
doi: 10.1002/cppb.20001 pmid: 31725981 |
[51] |
Cordero P, Kladwang W, VanLang CC, et al. Quantitative dimethyl sulfate mapping for automated RNA secondary structure inference[J]. Biochemistry, 2012, 51(36): 7037-7039.
doi: 10.1021/bi3008802 pmid: 22913637 |
[52] |
Siegfried NA, Busan S, Rice GM, et al. RNA motif discovery by SHAPE and mutational profiling(SHAPE-MaP)[J]. Nat Methods, 2014, 11(9): 959-965.
doi: 10.1038/nmeth.3029 pmid: 25028896 |
[53] |
Homan PJ, Favorov OV, Lavender CA, et al. Single-molecule correlated chemical probing of RNA[J]. Proc Natl Acad Sci USA, 2014, 111(38): 13858-13863.
doi: 10.1073/pnas.1407306111 pmid: 25205807 |
[54] | Zubradt M, et al. Target-specific DMS-MaPseq for in vivo RNA structure determination[J]. Protoc Exch, 2016, 155:30-40. |
[55] |
Zubradt M, Gupta P, Persad S, et al. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo[J]. Nat Methods, 2017, 14(1): 75-82.
doi: 10.1038/nmeth.4057 pmid: 27819661 |
[56] |
Wang ZY, Wang MY, Wang T, et al. Genome-wide probing RNA structure with the modified DMS-MaPseq in Arabidopsis[J]. Methods, 2019, 155: 30-40.
doi: 10.1016/j.ymeth.2018.11.018 URL |
[57] |
Kubota M, Tran C, Spitale RC. Progress and challenges for chemical probing of RNA structure inside living cells[J]. Nat Chem Biol, 2015, 11(12): 933-941.
doi: 10.1038/nchembio.1958 pmid: 26575240 |
[58] |
Mitchell D, Assmann SM, Bevilacqua PC. Probing RNA structure in vivo[J]. Curr Opin Struct Biol, 2019, 59: 151-158.
doi: 10.1016/j.sbi.2019.07.008 URL |
[59] | Feng C, Chan D, Joseph.J et al. Light-based RNA structure probing[J]. Nat Methods, 2018, 15(3): 163. |
[60] |
Li YY, et al. The structural modification of DNA nucleosides by nonenzymatic glycation: an in vitro study based on the reactions of glyoxal and methylglyoxal with 2'-deoxyguanosine[J]. Anal Bioanal Chem, 2008, 390(2): 679-688.
doi: 10.1007/s00216-007-1682-4 URL |
[61] |
Kudla G, Wan Y, Helwak A. RNA conformation capture by proximity ligation[J]. Annu Rev Genomics Hum Genet, 2020, 21: 81-100.
doi: 10.1146/annurev-genom-120219-073756 pmid: 32320281 |
[62] |
Cai ZK, et al. RIC-seq for global in situ profiling of RNA-RNA spatial interactions[J]. Nature, 2020, 582(7812): 432-437.
doi: 10.1038/s41586-020-2249-1 URL |
[63] |
Nguyen TC, Cao XY, Yu PF, et al. Mapping RNA-RNA interactome and RNA structure in vivo by MARIO[J]. Nat Commun, 2016, 7: 12023.
doi: 10.1038/ncomms12023 pmid: 27338251 |
[64] |
Jansson MD, Häfner SJ, Altinel K, et al. Regulation of translation by site-specific ribosomal RNA methylation[J]. Nat Struct Mol Biol, 2021, 28(11): 889-899.
doi: 10.1038/s41594-021-00669-4 pmid: 34759377 |
[65] |
Mathews DH, Disney MD, Childs JL, et al. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure[J]. Proc Natl Acad Sci USA, 2004, 101(19): 7287-7292.
doi: 10.1073/pnas.0401799101 pmid: 15123812 |
[66] | Schroeder SJ, Turner DH. Optical melting measurements of nucleic acid thermodynamics[J]. Methods Enzymol, 2009, 468: 371-387. |
[67] |
Turner DH, Mathews DH. NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure[J]. Nucleic Acids Res, 2010, 38: D280-D282.
doi: 10.1093/nar/gkp892 URL |
[68] | 蔡兆奎, 薛愿超. RNA结构解析技术研究进展[J]. 生命科学, 2021, 33(3): 281-291. |
Cai ZK, Xue YC. Research progresses of RNA structure probing technologies[J]. Chin Bull Life Sci, 2021, 33(3): 281-291. | |
[69] |
Sato K, Akiyama M, Sakakibara Y. RNA secondary structure prediction using deep learning with thermodynamic integration[J]. Nat Commun, 2021, 12(1): 941.
doi: 10.1038/s41467-021-21194-4 pmid: 33574226 |
[70] |
Andronescu M, Condon A, Hoos HH, et al. Computational approaches for RNA energy parameter estimation[J]. RNA, 2010, 16(12): 2304-2318.
doi: 10.1261/rna.1950510 pmid: 20940338 |
[71] |
Sun L, Xu K, Huang WZ, et al. Predicting dynamic cellular protein-RNA interactions by deep learning using in vivo RNA structures[J]. Cell Res, 2021, 31(5): 495-516.
doi: 10.1038/s41422-021-00476-y URL |
[72] |
Parisien M, Major F. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data[J]. Nature, 2008, 452(7183): 51-55.
doi: 10.1038/nature06684 URL |
[73] |
Reuter JS, Mathews DH. RNAstructure: software for RNA secondary structure prediction and analysis[J]. BMC Bioinformatics, 2010, 11: 129.
doi: 10.1186/1471-2105-11-129 pmid: 20230624 |
[74] |
Lorenz R, Bernhart SH, et al. ViennaRNA package 2.0[J]. Algorithms Mol Biol, 2011, 6: 26.
doi: 10.1186/1748-7188-6-26 URL |
[75] |
Tan YL, Wang XX, Shi YZ, et al. rsRNASP: a residue-separation-based statistical potential for RNA 3D structure evaluation[J]. Biophys J, 2022, 121(1): 142-156.
doi: 10.1016/j.bpj.2021.11.016 URL |
[1] | 倪春辉, 李惠霞, 李文豪, 刘永刚, 徐雪芬, 韩变. 不同基因型腐烂茎线虫群体杂交后代分子特征比较[J]. 生物技术通报, 2021, 37(7): 118-126. |
[2] | 程娜,蔡针华,吕加平,贾震虎,逄晓阳. 保加利亚乳杆菌CRISPR位点的序列分析[J]. 生物技术通报, 2018, 34(5): 87-93. |
[3] | 赵文娟;田亮;薄新文;马勋;康立超;. 牦牛多杀性巴氏杆菌外膜蛋白OmpH的扩增与生物信息学分析[J]. , 2012, 0(01): 139-144. |
[4] | 李江涛;殷相平;张金卫;丁农;柳纪省;. 狂犬病病毒CVS株糖蛋白、核蛋白生物信息学分析[J]. , 2010, 0(07): 179-184. |
[5] | 金定恩;张力青;姚艳丰;韩丽;梁爱心;滑国华;杨利国;. 猪肌生成抑制素基因去信号肽蛋白二级构预测和B细胞表位分析[J]. , 2008, 0(S1): 264-270. |
[6] | 张光祥;马正强. 目的基因全长cDNA合成及克隆技术进展[J]. , 2003, 0(05): 1-5. |
[7] | 孙国凤. 导入耐过氧化氢兰草基因促进植物生长[J]. , 1999, 0(05): 47-48. |
[8] | 孙国凤. 日克隆叶绿素分解基因首获成功[J]. , 1999, 0(05): 48-48. |
[9] | 李思经. Calgene开发中链脂肪酸新来源[J]. , 1995, 0(04): 31-31. |
[10] | 朱遐;. 转基因棉花有助于研究耐涝水稻植株[J]. , 1993, 0(05): 17-18. |
[11] | 孙雷心;. 可测钙的转基因植物[J]. , 1992, 0(06): 12-12. |
[12] | 朱遐;. 诺丁汉拟南芥供应中心[J]. , 1992, 0(03): 7-8. |
[13] | . 淋巴因子和干扰素[J]. , 1990, 0(11): 70-71. |
[14] | 李思经;. 细胞质能重组吗?[J]. , 1989, 0(07): 8-9. |
[15] | 孙国凤;. 美国农业部育成抗细菌性穿孔病的桃树[J]. , 1987, 0(01): 10-11. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||