生物技术通报 ›› 2023, Vol. 39 ›› Issue (2): 35-50.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0618
罗宁1,2(), 焦阳2, 茆振川2, 李惠霞1(), 谢丙炎2()
收稿日期:
2022-05-17
出版日期:
2023-02-26
发布日期:
2023-03-07
作者简介:
罗宁,男,博士研究生,研究方向:植物寄生线虫生物防治;E-mail: 基金资助:
LUO Ning1,2(), JIAO Yang2, MAO Zhen-chuan2, LI Hui-xia1(), XIE Bing-yan2()
Received:
2022-05-17
Published:
2023-02-26
Online:
2023-03-07
摘要:
根结线虫Meloidogyne spp.和孢囊线虫Heterodera spp.是分布最广、危害最严重的两类植物病原线虫。它们寄生于植物根部,通过巨型细胞或合胞体获取营养,影响植物生长发育,对农作物造成严重的经济损失。木霉菌Trichoderma spp. 是农业生产中重要的生防资源。近年来,随着环境保护意识的提升,木霉菌作为植物寄生线虫的生防资源越来越受到重视。本文主要从木霉菌对根结线虫和孢囊线虫的生防机制、作用方式、影响因素及存在的问题等方面进行综述,分析木霉菌在生物防治中存在的问题,并对其应用前景进行展望。
罗宁, 焦阳, 茆振川, 李惠霞, 谢丙炎. 木霉菌对根结线虫和孢囊线虫防治机理研究进展[J]. 生物技术通报, 2023, 39(2): 35-50.
LUO Ning, JIAO Yang, MAO Zhen-chuan, LI Hui-xia, XIE Bing-yan. Advances of Trichoderma in Controlling Root Knot Nematodes and Cyst Nematodes[J]. Biotechnology Bulletin, 2023, 39(2): 35-50.
木霉种类 Species name | 作用方式 Effect | 应用方式 Application method | 靶标线虫 Target nematode | 寄主植物 Host plant | 参考文献 Reference |
---|---|---|---|---|---|
长枝木霉 T. longibrachiatum | 寄生 Parasitic | 孢子悬浮液 Spore suspension | 南方根结线虫 Meloidogyne incognita 禾谷孢囊线虫 Heterodera avenae | 黄瓜 Cucumber 小麦 Wheat | [ |
康宁木霉 T. koningiopsis | 寄生 Parasitic | 孢子悬浮液 Spore suspension | 南方根结线虫 M. incognita | 黄瓜 Cucumber | [ |
长枝木霉 T. longibrachiatum | 拮抗 Antagonistic | 孢子悬浮液 Spore suspension | 爪哇根结线虫 M. javanica | 西葫芦 Zucchini | [ |
桔绿木霉 T. citrinoviride | 拮抗 Antagonistic | 过滤发酵液 Culture filtrate | 南方根结线虫 M. incognita | 番茄 Tomato | [ |
绿木霉T. virens | 拮抗Antagonistic | 孢子悬浮液Spore suspension | 爪哇根结线虫M. javanica | 花生Peanut | [ |
绿色木霉T. viride | 拮抗Antagonistic | 次级代谢产物Secondary metabolites | 南方根结线虫M. incognita | 番茄Tomato | [ |
毒杀Toxic | 过滤发酵液Culture filtrate | 南方根结线虫M. incognita | 黄瓜Cucumber | [ | |
毒杀Toxic | 过滤发酵液Culture filtrate | 北方根结线虫M. hapla | 番茄Tomato | [ | |
毒杀Toxic | 孢子悬浮液Spore suspension | 大豆孢囊线虫H. glycines | 大豆Soybean | [ | |
钩状木霉T. hamatum | 毒杀Toxic | 孢子悬浮液Spore suspension | 大豆孢囊线虫H. glycines | 大豆Soybean | [ |
棘孢木霉T. asperellum | 拮抗Antagonistic | 菌剂Preparation | 禾谷孢囊线虫H. avenae | 小麦Wheat | [ |
棘孢木霉T. asperellum | 寄生Parasitic | 孢子悬浮液Spore suspension | 南方根结线虫M. incognita | 番茄Tomato | [ |
哈茨木霉 T. harzianum | 拮抗 Antagonistic | 孢子悬浮液 Spore suspension | 南方根结线虫 M. incognita 南方根结线虫 M. incognita 象耳豆根结线虫 M. enterolobii 马铃薯孢囊线虫 Globodera pallida 玉米孢囊线虫 H. zeae | 番茄 Tomato 黄瓜 Cucumber 番石榴 Guava 马铃薯 Potato 玉米 Maize | [ |
拟康宁木霉 T. koningiopsis | 拮抗 Antagonistic | 几丁质酶提取物 Chitinase extraction | 南方根结线虫M. incognita 爪哇根结线虫M. javanica | - | [ |
白色木霉T. album | 拮抗Antagonistic | 孢子悬浮液Spore suspension | 花生根结线虫M. arenaria | 马铃薯Potato | [ |
绿色木霉T. viride | 拮抗Antagonistic | 种子处理Seed treatment | 北方根结线虫M. hapla | 胡萝卜Carrot | [ |
木霉菌 Trichoderma spp. | 拮抗 Antagonistic | 孢子悬浮液 Spore suspension | 北方根结线虫 M. hapla | 番茄 Tomato | [ |
木霉菌 Trichoderma spp. | 拮抗 Antagonistic | 种子处理 Seed treatment | 南方根结线虫 M. incognita | 黄瓜 Cucumber | [ |
木霉菌 Trichoderma spp. | 拮抗 Antagonistic | 木霉菌+茴香+香菜种子粉 Trichoderma + fennel + caraway powder | 南方根结线虫 M. incognita | 豌豆 Pea | [ |
木霉菌 Trichoderma spp. | 拮抗 Antagonistic | 木霉菌+淡紫拟青霉 Trichoderma + Paecilomyces lilacinus | 爪哇根结线虫 M. javanica | 菠萝 Pineapple | [ |
木霉菌 Trichoderma spp. | 拮抗 Antagonistic | 木霉菌+堆肥 Trichoderma+vermicompost | 拟禾本科根结线虫 M. graminicola | 水稻 Rice | [ |
表1 木霉菌防治根结线虫和孢囊线虫进展
Table 1 Advances in Trichoderma spp. controlling root-knot nematodes and cyst nematodes
木霉种类 Species name | 作用方式 Effect | 应用方式 Application method | 靶标线虫 Target nematode | 寄主植物 Host plant | 参考文献 Reference |
---|---|---|---|---|---|
长枝木霉 T. longibrachiatum | 寄生 Parasitic | 孢子悬浮液 Spore suspension | 南方根结线虫 Meloidogyne incognita 禾谷孢囊线虫 Heterodera avenae | 黄瓜 Cucumber 小麦 Wheat | [ |
康宁木霉 T. koningiopsis | 寄生 Parasitic | 孢子悬浮液 Spore suspension | 南方根结线虫 M. incognita | 黄瓜 Cucumber | [ |
长枝木霉 T. longibrachiatum | 拮抗 Antagonistic | 孢子悬浮液 Spore suspension | 爪哇根结线虫 M. javanica | 西葫芦 Zucchini | [ |
桔绿木霉 T. citrinoviride | 拮抗 Antagonistic | 过滤发酵液 Culture filtrate | 南方根结线虫 M. incognita | 番茄 Tomato | [ |
绿木霉T. virens | 拮抗Antagonistic | 孢子悬浮液Spore suspension | 爪哇根结线虫M. javanica | 花生Peanut | [ |
绿色木霉T. viride | 拮抗Antagonistic | 次级代谢产物Secondary metabolites | 南方根结线虫M. incognita | 番茄Tomato | [ |
毒杀Toxic | 过滤发酵液Culture filtrate | 南方根结线虫M. incognita | 黄瓜Cucumber | [ | |
毒杀Toxic | 过滤发酵液Culture filtrate | 北方根结线虫M. hapla | 番茄Tomato | [ | |
毒杀Toxic | 孢子悬浮液Spore suspension | 大豆孢囊线虫H. glycines | 大豆Soybean | [ | |
钩状木霉T. hamatum | 毒杀Toxic | 孢子悬浮液Spore suspension | 大豆孢囊线虫H. glycines | 大豆Soybean | [ |
棘孢木霉T. asperellum | 拮抗Antagonistic | 菌剂Preparation | 禾谷孢囊线虫H. avenae | 小麦Wheat | [ |
棘孢木霉T. asperellum | 寄生Parasitic | 孢子悬浮液Spore suspension | 南方根结线虫M. incognita | 番茄Tomato | [ |
哈茨木霉 T. harzianum | 拮抗 Antagonistic | 孢子悬浮液 Spore suspension | 南方根结线虫 M. incognita 南方根结线虫 M. incognita 象耳豆根结线虫 M. enterolobii 马铃薯孢囊线虫 Globodera pallida 玉米孢囊线虫 H. zeae | 番茄 Tomato 黄瓜 Cucumber 番石榴 Guava 马铃薯 Potato 玉米 Maize | [ |
拟康宁木霉 T. koningiopsis | 拮抗 Antagonistic | 几丁质酶提取物 Chitinase extraction | 南方根结线虫M. incognita 爪哇根结线虫M. javanica | - | [ |
白色木霉T. album | 拮抗Antagonistic | 孢子悬浮液Spore suspension | 花生根结线虫M. arenaria | 马铃薯Potato | [ |
绿色木霉T. viride | 拮抗Antagonistic | 种子处理Seed treatment | 北方根结线虫M. hapla | 胡萝卜Carrot | [ |
木霉菌 Trichoderma spp. | 拮抗 Antagonistic | 孢子悬浮液 Spore suspension | 北方根结线虫 M. hapla | 番茄 Tomato | [ |
木霉菌 Trichoderma spp. | 拮抗 Antagonistic | 种子处理 Seed treatment | 南方根结线虫 M. incognita | 黄瓜 Cucumber | [ |
木霉菌 Trichoderma spp. | 拮抗 Antagonistic | 木霉菌+茴香+香菜种子粉 Trichoderma + fennel + caraway powder | 南方根结线虫 M. incognita | 豌豆 Pea | [ |
木霉菌 Trichoderma spp. | 拮抗 Antagonistic | 木霉菌+淡紫拟青霉 Trichoderma + Paecilomyces lilacinus | 爪哇根结线虫 M. javanica | 菠萝 Pineapple | [ |
木霉菌 Trichoderma spp. | 拮抗 Antagonistic | 木霉菌+堆肥 Trichoderma+vermicompost | 拟禾本科根结线虫 M. graminicola | 水稻 Rice | [ |
木霉种类 Species name | 应用方式 Application method | 靶标线虫 Target nematode | 寄主植物 Host plant | 参考文献 Reference |
---|---|---|---|---|
长枝木霉 T. longibrachiatum | 孢子悬浮液Spore suspension | 南方根结线虫M. incognita | 番茄Tomato | [ |
孢子悬浮液Spore suspension | 大豆孢囊线虫H. glycines | 小麦Wheat | ||
木霉菌+堆肥+芽孢杆菌Trichoderma+ Compost+ Bacillus | 爪哇根结线虫M. javanica | 大豆Soybean | ||
钩状木霉T. hamatum | 孢子悬浮液Spore suspension | 南方根结线虫M. incognita | 番茄Tomato | [ |
深绿木霉T. atroviride | 孢子悬浮液Spore suspension | 爪哇根结线虫M. javanica | 番茄Tomato | [ |
棘孢木霉T. asperellum | 商业产品Commercial products | 南方根结线虫M. incognita | 番茄Tomato | [ |
孢子悬浮液Spore suspension | 爪哇根结线虫M. javanica | 番茄Tomato | ||
拟康宁木霉T. koningiopsis | 种子包衣Seed coating | 大豆孢囊线虫H. glycines | 大豆Soybean | [ |
绿色木霉T. viride | 种子包衣Seed coating | 大豆孢囊线虫H. glycines | 大豆Soybean | |
长孢木霉T. longipile | 种子包衣Seed coating | 大豆孢囊线虫H. glycines | 大豆Soybean | |
哈茨木霉T. harzianum | 孢子悬浮液Spore suspension | 南方根结线虫M. incognita | 番茄Tomato | [ |
表2 木霉菌诱导抗性防治根结线虫和孢囊线虫进展
Table 2 Progress in Trichoderma spp. induced resistance against root-knot nematodes and cyst nematodes
木霉种类 Species name | 应用方式 Application method | 靶标线虫 Target nematode | 寄主植物 Host plant | 参考文献 Reference |
---|---|---|---|---|
长枝木霉 T. longibrachiatum | 孢子悬浮液Spore suspension | 南方根结线虫M. incognita | 番茄Tomato | [ |
孢子悬浮液Spore suspension | 大豆孢囊线虫H. glycines | 小麦Wheat | ||
木霉菌+堆肥+芽孢杆菌Trichoderma+ Compost+ Bacillus | 爪哇根结线虫M. javanica | 大豆Soybean | ||
钩状木霉T. hamatum | 孢子悬浮液Spore suspension | 南方根结线虫M. incognita | 番茄Tomato | [ |
深绿木霉T. atroviride | 孢子悬浮液Spore suspension | 爪哇根结线虫M. javanica | 番茄Tomato | [ |
棘孢木霉T. asperellum | 商业产品Commercial products | 南方根结线虫M. incognita | 番茄Tomato | [ |
孢子悬浮液Spore suspension | 爪哇根结线虫M. javanica | 番茄Tomato | ||
拟康宁木霉T. koningiopsis | 种子包衣Seed coating | 大豆孢囊线虫H. glycines | 大豆Soybean | [ |
绿色木霉T. viride | 种子包衣Seed coating | 大豆孢囊线虫H. glycines | 大豆Soybean | |
长孢木霉T. longipile | 种子包衣Seed coating | 大豆孢囊线虫H. glycines | 大豆Soybean | |
哈茨木霉T. harzianum | 孢子悬浮液Spore suspension | 南方根结线虫M. incognita | 番茄Tomato | [ |
木霉种类 Species name | 应用方式 Application method | 作用 Function | 寄主植物 Host plant | 参考文献 Reference |
---|---|---|---|---|
深绿木霉 T. atrovirid | 次级代谢产物 Secondary metabolites | 诱导早期植物生长 Induce early plant growth | 小麦 Wheat | [ |
阿兹维多木霉 T. azevedoi | 次级代谢产物 Secondary metabolites | 提高叶绿素、类胡萝卜素含量和促进生长 Increase chlorophyll, carotenoids and promote growth | 莴苣 Lettuce | [ |
哈茨木霉 T. harzianum | 次级代谢产物 Secondary metabolites | 提高种子发芽指数和种子活力指数 Improve seed germination index and seed vigor index | 水稻 Rice | [ |
孢子悬浮液 Spore suspension | 提高土壤脲酶和磷酸酶活性,提高N和P利用率 Increase soil urease and phosphatase activities, improve N and P utilization | 甜瓜 Melon | ||
奶油木霉 T. cremeum | 次级代谢产物 Secondary metabolites | 诱导早期植物生长 Induce early plant growth | 番茄 Tomato | [ |
棘孢木霉 T. asperellum | 孢子悬浮液 Spore suspension | 诱导产生生长素、赤霉素和脱落酸,促进生长 Induce the production of IAA, GA, ABA and promote growth | 黄瓜 Cucumber | [ |
长枝木霉 T. longibrachiatum | 孢子悬浮液 Spore suspension | 促进生长,提高根际土壤养分和土壤酶活性 Promote growth, increase soil nutrients and soil enzyme activities in rhizosphere | 玉米 Maize | [ |
贵州木霉 T. guizhouense | 孢子悬浮液 Spore suspension | 提高根系密度,促进生长;扩大根细胞壁,增加定殖 Enhance root density and promote growth; expand root cell walls, and increase root colonization | 黄瓜 Cucumber | [ |
土星孢木霉T.saturnisporum | 孢子悬浮液 Spore suspension | 增产,促进生长 Increase production and promote growth | 甜瓜 Melon | [ |
拟康宁木霉 T. koningiopsis | 孢子悬浮液 Spore suspension | 加速种子萌发,提高种子活力 Accelerate seed germination, and increase seed vigor | 西瓜 Watermelon | [ |
绿色木霉 T. viride | 孢子悬浮液 Spore suspension | 增产,促进生长 Increase production and promote growth | 黄瓜 Cucumber | [ |
表3 木霉菌促生作用研究进展
Table 3 Advances in the growth promoting effect of Trichoderma spp.
木霉种类 Species name | 应用方式 Application method | 作用 Function | 寄主植物 Host plant | 参考文献 Reference |
---|---|---|---|---|
深绿木霉 T. atrovirid | 次级代谢产物 Secondary metabolites | 诱导早期植物生长 Induce early plant growth | 小麦 Wheat | [ |
阿兹维多木霉 T. azevedoi | 次级代谢产物 Secondary metabolites | 提高叶绿素、类胡萝卜素含量和促进生长 Increase chlorophyll, carotenoids and promote growth | 莴苣 Lettuce | [ |
哈茨木霉 T. harzianum | 次级代谢产物 Secondary metabolites | 提高种子发芽指数和种子活力指数 Improve seed germination index and seed vigor index | 水稻 Rice | [ |
孢子悬浮液 Spore suspension | 提高土壤脲酶和磷酸酶活性,提高N和P利用率 Increase soil urease and phosphatase activities, improve N and P utilization | 甜瓜 Melon | ||
奶油木霉 T. cremeum | 次级代谢产物 Secondary metabolites | 诱导早期植物生长 Induce early plant growth | 番茄 Tomato | [ |
棘孢木霉 T. asperellum | 孢子悬浮液 Spore suspension | 诱导产生生长素、赤霉素和脱落酸,促进生长 Induce the production of IAA, GA, ABA and promote growth | 黄瓜 Cucumber | [ |
长枝木霉 T. longibrachiatum | 孢子悬浮液 Spore suspension | 促进生长,提高根际土壤养分和土壤酶活性 Promote growth, increase soil nutrients and soil enzyme activities in rhizosphere | 玉米 Maize | [ |
贵州木霉 T. guizhouense | 孢子悬浮液 Spore suspension | 提高根系密度,促进生长;扩大根细胞壁,增加定殖 Enhance root density and promote growth; expand root cell walls, and increase root colonization | 黄瓜 Cucumber | [ |
土星孢木霉T.saturnisporum | 孢子悬浮液 Spore suspension | 增产,促进生长 Increase production and promote growth | 甜瓜 Melon | [ |
拟康宁木霉 T. koningiopsis | 孢子悬浮液 Spore suspension | 加速种子萌发,提高种子活力 Accelerate seed germination, and increase seed vigor | 西瓜 Watermelon | [ |
绿色木霉 T. viride | 孢子悬浮液 Spore suspension | 增产,促进生长 Increase production and promote growth | 黄瓜 Cucumber | [ |
[1] |
Singh S, Singh B, Singh AP. Nematodes: a threat to sustainability of agriculture[J]. Procedia Environ Sci, 2015, 29: 215-216.
doi: 10.1016/j.proenv.2015.07.270 URL |
[2] |
Jones JT, Haegeman A, Danchin EGJ, et al. Top 10 plant-parasitic nematodes in molecular plant pathology[J]. Mol Plant Pathol, 2013, 14(9): 946-961.
doi: 10.1111/mpp.12057 pmid: 23809086 |
[3] |
邓苗苗, 郭晓黎. 植物响应寄生线虫侵染机制的研究进展[J]. 生物技术通报, 2021, 37(7): 25-34.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0669 |
Deng MM, Guo XL. Research progress on plants responses to parasitic nematodes infection[J]. Biotechnol Bull, 2021, 37(7): 25-34. | |
[4] |
Sato K, Kadota Y, Shirasu K. Plant immune responses to parasitic nematodes[J]. Front Plant Sci, 2019, 10: 1165.
doi: 10.3389/fpls.2019.01165 pmid: 31616453 |
[5] |
Onkendi EM, Kariuki GM, Marais M, et al. The threat of root-knot nematodes(Meloidogyne spp.)in Africa: a review[J]. Plant Pathol, 2014, 63(4): 727-737.
doi: 10.1111/ppa.12202 URL |
[6] | 韩冰洁, 张立君, 张建君. 作物根结线虫病防治研究进展[J]. 长江蔬菜, 2021(22): 44-48. |
Han BJ, Zhang LJ, Zhang JJ. Research progress on control of root-knot nematode disease in crops[J]. J Chang Veg, 2021(22): 44-48. | |
[7] |
Karuri HW, Olago D, Neilson R, et al. A survey of root knot nematodes and resistance to Meloidogyne incognita in sweet potato varieties from Kenyan fields[J]. Crop Prot, 2017, 92: 114-121.
doi: 10.1016/j.cropro.2016.10.020 URL |
[8] |
Verma A, Lee C, Morriss S, et al. The novel cyst nematode effector protein 30D08 targets host nuclear functions to alter gene expression in feeding sites[J]. New Phytol, 2018, 219(2): 697-713.
doi: 10.1111/nph.15179 pmid: 29726613 |
[9] | 罗宁, 李惠霞, 郭静, 等. 甘肃省陇东南大豆孢囊线虫的发生和分布[J]. 植物保护, 2019, 45(3): 165-169. |
Luo N, Li HX, Guo J, et al. Occurrence and distribution of Heterodera glycines in southeast of Gansu Province[J]. Plant Prot, 2019, 45(3): 165-169. | |
[10] |
Sekimoto S, Hisai J, Iwahori H. First report of the sugar beet cyst nematode, Heterodera schachtii, on Brassica sp. in Japan[J]. Plant Dis, 2019, 103(6): 1433.
doi: 10.1094/PDIS-09-18-1541-PDN |
[11] | Toor MD, Rehman FUR, Adnan M, et al. Cyst nematode and its impacts on soybean and potato: a review[J]. Acta Scientific Biotechnology, 2021, 2(2): 17-22. |
[12] | 刘荣荣, 王暄, 李红梅, 等. 河南省小麦主产区菲利普孢囊线虫与禾谷孢囊线虫发生情况调查[J]. 植物保护, 2017, 43(5): 157-163. |
Liu RR, Wang X, Li HM, et al. Survey of the occurrence of Heterodera filipjevi and H. avenae on wheat in main growing area in Henan Province[J]. Plant Prot, 2017, 43(5): 157-163. | |
[13] | Cui JK, Zhou B, Jiao YJ, et al. First report of Heterodera Zeae on maize(Zea mays)in Henan Province, China[J]. Plant Dis, 2020, 104(7): 2031. |
[14] |
Cui JK, Huang WK, Peng H, et al. A new pathotype characterization of Daxing and Huangyuan populations of cereal cyst nematode(Heterodera avenae)in China[J]. J Integr Agric, 2015, 14(4): 724-731.
doi: 10.1016/S2095-3119(14)60982-5 URL |
[15] | 高丙利. 植物线虫综合治理概论[M]. 北京: 中国农业科学技术出版社, 2021. |
Gao BL. Introduction to integrated nematode management[M]. Beijing: China Agricultural Science and Technology Press, 2021. | |
[16] | 彭德良. 植物线虫病害:我国粮食安全面临的重大挑战[J]. 生物技术通报, 2021, 37(7): 1-2. |
Peng DL. Plant nematode diseases: serious challenges to China's food security[J]. Biotechnol Bull, 2021, 37(7): 1-2. | |
[17] | 罗宁, 刘永刚, 李惠霞, 等. 不同杀线剂对大豆孢囊线虫病的防治效果[J]. 陕西农业科学, 2020, 66(1): 10-14. |
Luo N, Liu YG, Li HX, et al. Control effects of different nematicides on soybean cyst nematode[J]. Shaanxi J Agric Sci, 2020, 66(1): 10-14. | |
[18] | 李瑞, 李惠霞, 谢丙炎, 等. 长枝木霉菌株TL16防治南方根结线虫的作用机理[J]. 植物保护学报, 2020, 47(2): 384-393. |
Li R, Li HX, Xie BY, et al. The control mechanism of fungus Trichoderma longibrachiatum TL16 against root-knot nematode Meloidogyne incognita[J]. J Plant Prot, 2020, 47(2): 384-393. | |
[19] | Lafta A, Kasim A. Effect of nematode-trapping fungi, Trichoderma harzianum and Pseudomonas fluorescens in controlling Meloidogyne spp[J]. Plant Arch, 2019, 19(1): 1163-1168. |
[20] |
Sharon E, Chet I, Spiegel Y. Improved attachment and parasitism of Trichoderma on Meloidogyne javanica in vitro[J]. Eur J Plant Pathol, 2009, 123(3): 291-299.
doi: 10.1007/s10658-008-9366-2 URL |
[21] | Temitope AE, Patrick AA, Abiodun J, et al. Trichoderma asperellum affects Meloidogyne incognita infestation and development in Celosia argentea[J]. Open Agric, 2020, 5(1): 778-784. |
[22] |
El-Nagdi WMA, Youssef MMA, El-Khair HA, et al. Effect of certain organic amendments and Trichoderma species on the root-knot nematode, Meloidogyne incognita, infecting pea(Pisum sativum L.)plants[J]. Egypt J Biol Pest Control, 2019, 29: 75.
doi: 10.1186/s41938-019-0182-0 URL |
[23] |
de Medeiros HA, de Araújo Filho JV, de Freitas LG, et al. Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride[J]. Sci Rep, 2017, 7: 40216.
doi: 10.1038/srep40216 URL |
[24] |
Al-Hazmi AS, TariqJaveed M. Effects of different inoculum densities of Trichoderma harzianum and Trichoderma viride against Meloidogyne javanica on tomato[J]. Saudi J Biol Sci, 2016, 23(2): 288-292.
doi: 10.1016/j.sjbs.2015.04.007 pmid: 26981012 |
[25] |
Köhl J, Kolnaar R, Ravensberg WJ. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy[J]. Front Plant Sci, 2019, 10: 845.
doi: 10.3389/fpls.2019.00845 pmid: 31379891 |
[26] |
Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, et al. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma[J]. Genome Biol, 2011, 12(4): R40.
doi: 10.1186/gb-2011-12-4-r40 URL |
[27] |
Pocurull M, Fullana AM, Ferro M, et al. Commercial formulates of Trichoderma induce systemic plant resistance to Meloidogyne incognita in tomato and the effect is additive to that of the mi-1.2 resistance gene[J]. Front Microbiol, 2020, 10: 3042.
doi: 10.3389/fmicb.2019.03042 URL |
[28] |
Li J, Zou CG, Xu JP, et al. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic Nematodes[J]. Annu Rev Phytopathol, 2015, 53: 67-95.
doi: 10.1146/annurev-phyto-080614-120336 pmid: 25938277 |
[29] | 李磊, 赵俊杰, 刘莹莹, 等. 高效根结线虫生防真菌筛选及其性能研究[J]. 生物学杂志, 2021, 38(6): 70-74, 81. |
Li L, Zhao JJ, Liu YY, et al. Screening and performance of high-efficiency root-knot nematode biocontrol fungi[J]. J Biol, 2021, 38(6): 70-74, 81. | |
[30] | 朱先婷, 赵洋, 王凯, 等. 寄生于南方根结线虫卵的长梗木霉几丁质酶基因TlChi46的克隆[J]. 植物病理学报, 2016, 46(1): 72-83. |
Zhu XT, Zhao Y, Wang K, et al. Cloning of a novel chitinase gene TIChi46 from Trichoderma longibrachiatum parasitizing on Meloidogyne incognita eggs[J]. Acta Phytopathol Sin, 2016, 46(1): 72-83. | |
[31] | 陈秀菊, 坚晋卓, 李惠霞, 等. 2株真菌的鉴定及对禾谷孢囊线虫的防治效果[J]. 华南农业大学学报, 2020, 41(1): 108-115. |
Chen XJ, Jian JZ, Li HX, et al. Identification of two fungi strains and their control effects to cereal cyst nematode[J]. J South China Agric Univ, 2020, 41(1): 108-115. | |
[32] |
Baldoni DB, Antoniolli ZI, Mazutti MA, et al. Chitinase production by Trichoderma koningiopsis UFSMQ40 using solid state fermentation[J]. Braz J Microbiol, 2020, 51(4): 1897-1908.
doi: 10.1007/s42770-020-00334-w URL |
[33] |
Szabó M, Csepregi K, Gálber M, et al. Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi: the role of chi18-5 and chi18-12 genes in nematode egg-parasitism[J]. Biol Control, 2012, 63(2): 121-128.
doi: 10.1016/j.biocontrol.2012.06.013 URL |
[34] |
Szabó M, Urbán P, Virányi F, et al. Comparative gene expression profiles of Trichoderma harzianum proteases during in vitro nematode egg-parasitism[J]. Biol Control, 2013, 67(3): 337-343.
doi: 10.1016/j.biocontrol.2013.09.002 URL |
[35] |
Yang YX, Wu CQ, Ahammed GJ, et al. Red light-induced systemic resistance against root-knot nematode is mediated by a coordinated regulation of salicylic acid, jasmonic acid and redox signaling in watermelon[J]. Front Plant Sci, 2018, 9: 899.
doi: 10.3389/fpls.2018.00899 URL |
[36] |
Lu XM, Liang YH, Deng X, et al. Comprehensive analysis of subtilase gene family and their responses to nematode in Trichoderma harzianum[Preprint]. 2020. DOI: 10.20944/preprints202010.0403.v1.
doi: 10.20944/preprints202010.0403.v1 |
[37] | Gruber S, Seidl-Seiboth V. Self versus non-self: fungal cell wall degradation in Trichoderma[J]. Microbiology(Reading), 2012, 158(Pt 1): 26-34. |
[38] |
Chen L, Jiang H, Cheng QP, et al. Enhanced nematicidal potential of the chitinase pachi from Pseudomonas aeruginosa in association with Cry21Aa[J]. Sci Rep, 2015, 5: 14395.
doi: 10.1038/srep14395 pmid: 26400097 |
[39] | 王秀娟, 张树武, 徐秉良. 木霉菌对植物寄生线虫防治作用机制[J]. 中国生物防治学报, 2022, 38(1): 133-139. |
Wang XJ, Zhang SW, Xu BL. Control mechanism of Trichoderma against plant parasitic Nematodes[J]. Chin J Biol Control, 2022, 38(1): 133-139. | |
[40] |
Li MF, Li GH, Zhang KQ. Non-volatile metabolites from Trichoderma spp[J]. Metabolites, 2019, 9(3): 58.
doi: 10.3390/metabo9030058 URL |
[41] | 李通, 毛维兴, 薛应钰, 等. 绿色木霉B3菌株发酵液杀线活性分析及其稳定性测定[J]. 西北农业学报, 2019, 28(9): 1535-1542. |
Li T, Mao WX, Xue YY, et al. Evaluation of stability and nematicidal activity in the fermentation broth of Trichoderma atroviride B3[J]. Acta Agric Boreali Occidentalis Sin, 2019, 28(9): 1535-1542. | |
[42] | 田忠玲. 大豆孢囊线虫生防真菌的筛选、鉴定及应用基础研究[D]. 杭州: 浙江大学, 2016. |
Tian ZL. Isolation, identification and application of fungal biocontrol agents to Heterodera glycines[D]. Hangzhou: Zhejiang University, 2016. | |
[43] | 姚美玲. 杀线虫真菌的筛选鉴定及胶霉毒素的初步分离[D]. 沈阳: 沈阳农业大学, 2018. |
Yao ML. Screening and identification of nematicidal fungi and preliminary separation of gliotoxin[D]. Shenyang: Shenyang Agricultural University, 2018. | |
[44] |
Du FY, Ju GL, Xiao L, et al. Sesquiterpenes and cyclodepsipeptides from marine-derived fungus Trichoderma longibrachiatum and their antagonistic activities against soil-borne pathogens[J]. Mar Drugs, 2020, 18(3): 165.
doi: 10.3390/md18030165 URL |
[45] |
Guzmán-Guzmán P, Alemán-Duarte MI, Delaye L, et al. Identification of effector-like proteins in Trichoderma spp. and role of a hydrophobin in the plant-fungus interaction and mycoparasitism[J]. BMC Genet, 2017, 18(1): 16.
doi: 10.1186/s12863-017-0481-y pmid: 28201981 |
[46] | Hermosa R, Cardoza RE, Rubio MB, et al. Secondary metabolism and antimicrobial metabolites of Trichoderma[M]// Biotechnology and biology of Trichoderma. Amsterdam: Elsevier, 2014: 125-137. |
[47] | Alfiky A, Weisskopf L. Deciphering Trichoderma-plant-pathogen interactions for better development of biocontrol applications[J]. J Fungi(Basel), 2021, 7(1): 61. |
[48] |
Contina JB, Dandurand LM, Knudsen GR. Use of GFP-tagged Trichoderma harzianum as a tool to study the biological control of the potato cyst nematode Globodera pallida[J]. Appl Soil Ecol, 2017, 115: 31-37.
doi: 10.1016/j.apsoil.2017.03.010 URL |
[49] |
Khan RAA, Najeeb S, Mao ZC, et al. Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic bacteria and root-knot nematode[J]. Microorganisms, 2020, 8(3): 401.
doi: 10.3390/microorganisms8030401 URL |
[50] | Baazeem A, Almanea A, Manikandan P, et al. In vitro antibacterial, antifungal, nematocidal and growth promoting activities of Trichoderma hamatum FB10 and its secondary metabolites[J]. J Fungi(Basel), 2021, 7(5): 331. |
[51] |
Zhang SW, Gan YT, Xu BL. Biocontrol potential of a native species of Trichoderma longibrachiatum against Meloidogyne incognita[J]. Appl Soil Ecol, 2015, 94: 21-29.
doi: 10.1016/j.apsoil.2015.04.010 URL |
[52] |
Sreenayana B, Vinodkumar S, Nakkeeran S, et al. Multitudinous potential of Trichoderma species in imparting resistance against F. oxysporum f.sp. cucumerinum and Meloidogyne incognita disease complex[J]. J Plant Growth Regul, 2022, 41(3): 1187-1206.
doi: 10.1007/s00344-021-10372-9 URL |
[53] |
Sokhandani Z, Moosavi MR, Basirnia T. Optimum concentrations of Trichoderma longibrachiatum and cadusafos for controlling Meloidogyne javanica on zucchini plants[J]. J Nematol, 2016, 48(1): 54-63.
pmid: 27168653 |
[54] |
Fan HY, Yao ML, Wang HM, et al. Isolation and effect of Trichoderma citrinoviride Snef1910 for the biological control of root-knot nematode, Meloidogyne incognita[J]. BMC Microbiol, 2020, 20(1): 299.
doi: 10.1186/s12866-020-01984-4 URL |
[55] | Elkelany U, Hammam M, El-Nagdi W, et al. Field application of Trichoderma spp. for controlling the root-knot nematode, Meloidogyne javanica in peanut plants[J]. Egypt J Agronematology, 2021, 20(2): 85-100. |
[56] | 翟明娟, 李登辉, 马玉琴, 等. 绿色木霉菌株Tvir-6对黄瓜根结线虫的防治效果研究[J]. 中国蔬菜, 2017(10): 67-72. |
Zhai MJ, Li DH, Ma YQ, et al. Studies on biocontrol effect of Trichoderma viride tvir-6 against root knot nematode on cucumber[J]. China Veg, 2017(10): 67-72. | |
[57] | 刘霆, 王莉, 段玉玺, 等. 绿色木霉对北方根结线虫的作用[J]. 江西农业大学学报, 2007, 29(4): 566-569. |
Liu T, Wang L, Duan YX, et al. Effects of Trichoderma viride on egg hatching and juvenile mortality of Meloidogyne halpa[J]. Acta Agric Univ Jiangxiensis, 2007, 29(4): 566-569. | |
[58] | 王继雯, 李磊, 刘莹莹, 等. 棘孢木霉SFC-3菌剂对小麦生理生化特性及小麦孢囊线虫的影响[J]. 植物保护, 2021, 47(5): 52-57. |
Wang JW, Li L, Liu YY, et al. Effects of Trichoderma asperellum SFC-3 agent on wheat physiological and biochemical characteristics and wheat cyst nematode[J]. Plant Prot, 2021, 47(5): 52-57. | |
[59] |
Khan MR, Ahmad I, Ahamad F. Effect of pure culture and culture filtrates of Trichoderma species on root-knot nematode, Meloidogyne incognita infesting tomato[J]. Indian Phytopathol, 2018, 71(2): 265-274.
doi: 10.1007/s42360-018-0031-1 URL |
[60] | Jindapunnapat K, Chinnasri B, Kwankuae S. Biological control of root-knot Nematodes(Meloidogyne enterolobii)in guava by the fungus Trichoderma harzianum[J]. J Dev Sustain Agric, 2013, 8: 110-118. |
[61] | Mehta SK, Baheti BL, Nama C P, et al. Eco-safe management of maize cyst nematode, Heterodera zeae infecting maize(Zea mays L.)[J]. Current Nematology, 2015, 26(12): 45-49. |
[62] |
张雅静, 宋美燕, 张怡静, 等. 兼防黄瓜根腐病和根结线虫病的淡紫拟青霉和哈茨木霉的筛选[J]. 生物技术通报, 2021, 37(2): 40-50.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0872 |
Zhang YJ, Song MY, Zhang YJ, et al. Identification of Purpureocillium lilacinum and Trichoderma harzianum strains for simultaneously controlling cucumber root rot and root-knot nematode diseases[J]. Biotechnol Bull, 2021, 37(2): 40-50. | |
[63] |
Abd-El-Khair H, El-Nagdi WMA. Field application of bio-control agents for controlling fungal root rot and root-knot nematode in potato[J]. Arch Phytopathol Plant Prot, 2014, 47(10): 1218-1230.
doi: 10.1080/03235408.2013.837632 URL |
[64] |
Nagachandrabose S. Liquid bioformulations for the management of root-knot nematode, Meloidogyne hapla that infects carrot[J]. Crop Prot, 2018, 114: 155-161.
doi: 10.1016/j.cropro.2018.08.022 URL |
[65] |
Braithwaite M, Clouston A, Minchin R, et al. The density-dependent effect of initial nematode population levels on the efficacy of Trichoderma as a bio-nematicide against Meloidogyne hapla on tomato[J]. Australas Plant Pathol, 2016, 45(5): 473-479.
doi: 10.1007/s13313-016-0432-5 URL |
[66] |
Mohammed RKA, Khan MR. Management of root-knot nematode in cucumber through seed treatment with multifarious beneficial microbes in polyhouse under protected cultivation[J]. Indian Phytopathol, 2021, 74(4): 1035-1043.
doi: 10.1007/s42360-021-00422-3 URL |
[67] |
Kiriga AW, Haukeland S, Kariuki GM, et al. Effect of Trichoderma spp. and Purpureocillium lilacinum on Meloidogyne javanica in commercial pineapple production in Kenya[J]. Biol Control, 2018, 119: 27-32.
doi: 10.1016/j.biocontrol.2018.01.005 URL |
[68] | Kumar D, Khilari K, Kumar N, et al. Integrated disease management of rice root knot nematode(Meloidogyne graminicola)through organic amendments, Trichoderma spp. and Carbofuran[J]. J Pharmacogn Phytochem, 2017, 6: 2509-2515. |
[69] |
Morán-Diez E, Rubio B, Domínguez S, et al. Transcriptomic response of Arabidopsis thaliana after 24 h incubation with the biocontrol fungus Trichoderma harzianum[J]. J Plant Physiol, 2012, 169(6): 614-620.
doi: 10.1016/j.jplph.2011.12.016 URL |
[70] | Wu Q, Sun RY, Ni M, et al. Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy[J]. PLoS One, 2017, 12(6): e0179957. |
[71] |
Chen SC, Ren JJ, Zhao HJ, et al. Trichoderma harzianum improves defense against Fusarium oxysporum by regulating ROS and RNS metabolism, redox balance, and energy flow in cucumber roots[J]. Phytopathology, 2019, 109(6): 972-982.
doi: 10.1094/PHYTO-09-18-0342-R URL |
[72] | 马玉琴. 钩状木霉对根结线虫的生物防治作用研究[D]. 北京: 中国农业科学院, 2017. |
Ma YQ. The mechanisms and effect of Trichoderma hamatum against root-knot nematode[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. | |
[73] | 谢萌萌. 诱导大豆抗胞囊线虫和灰斑病的生物种衣剂研制及其生防机制研究[D]. 沈阳: 沈阳农业大学, 2019. |
Xie MM. Study on the development of biological seed coating agent for inducing soybean resistance cyst nematode and gray spot disease and its biocontrol mechanism[D]. Shenyang: Shenyang Agricultural University, 2019. | |
[74] | 刘畅. 棘孢木霉CBS 433.97次级代谢产物分离及其生物活性分析[D]. 宜昌: 三峡大学, 2021. |
Liu C. Isolation and bioactivity analysis of secondary metabolites from Trichoderma asperellum CBS 433.97[D]. Yichang: China Three Gorges University, 2021. | |
[75] | 王学坚, 刘子仪, 张体坤, 等. 钩状木霉(Trichoderma hamatum YMF1.00247)促进烟草生长及其诱导抗性研究[J]. 云南大学学报: 自然科学版, 2020, 42(6): 1230-1236. |
Wang XJ, Liu ZY, Zhang TK, et al. A study on the growth-promoting and resistance induction of Trichoderma hamatum YMF1.00247 on tobacco[J]. J Yunnan Univ Nat Sci Ed, 2020, 42(6): 1230-1236. | |
[76] |
Yan YR, Mao Q, Wang YQ, et al. Trichoderma harzianum induces resistance to root-knot nematodes by increasing secondary metabolite synthesis and defense-related enzyme activity in Solanum lycopersicum L[J]. Biol Control, 2021, 158: 104609.
doi: 10.1016/j.biocontrol.2021.104609 URL |
[77] |
Zhao PB, Ren AZ, Dong P, et al. The antimicrobial peptaibol trichokonin IV promotes plant growth and induces systemic resistance against Botrytis cinerea infection in moth orchid[J]. J Phytopathol, 2018, 166(5): 346-354.
doi: 10.1111/jph.12692 URL |
[78] |
Yu CJ, Dou K, Wang SQ, et al. Elicitor hydrophobin Hyd1 interacts with Ubiquilin1-like to induce maize systemic resistance[J]. J Integr Plant Biol, 2020, 62(4): 509-526.
doi: 10.1111/jipb.12796 |
[79] | 黄佩. 哈茨木霉TH33疏水蛋白的异源表达及诱导烟草防御反应[D]. 北京: 中国农业科学院, 2020. |
Huang P. Heterologous expression hydrophobins of Trichoderma harzianum TH33 and induction of tobacco defense response[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. | |
[80] |
Poveda J, Abril-Urias P, Escobar C. Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi[J]. Front Microbiol, 2020, 11: 992.
doi: 10.3389/fmicb.2020.00992 pmid: 32523567 |
[81] |
Martínez-Medina A, Fernandez I, Lok GB, et al. Shifting from priming of salicylic acid to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita[J]. New Phytol, 2017, 213(3): 1363-1377.
doi: 10.1111/nph.14251 pmid: 27801946 |
[82] |
Leonetti P, Zonno MC, Molinari S, et al. Induction of SA-signaling pathway and ethylene biosynthesis in Trichoderma harzianum treated tomato plants after infection of the root-knot nematode Meloidogyne incognita[J]. Plant Cell Rep, 2017, 36(4): 621-631.
doi: 10.1007/s00299-017-2109-0 pmid: 28239746 |
[83] |
Rubio MB, Quijada NM, Pérez E, et al. Identifying beneficial qualities of Trichoderma parareesei for plants[J]. Appl Environ Microbiol, 2014, 80(6): 1864-1873.
doi: 10.1128/AEM.03375-13 URL |
[84] |
Yuan M, Huang YY, Ge WN, et al. Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced by Trichoderma longibrachiatum H9 in cucumber[J]. BMC Genomics, 2019, 20(1): 144.
doi: 10.1186/s12864-019-5513-8 pmid: 30777003 |
[85] | Wang R, Chen D, Khan RAA, et al. A novel Trichoderma asperellum strain DQ-1 promotes tomato growth and induces resistance to gray mold caused by Botrytis cinerea[J]. FEMS Microbiol Lett, 2021, 368(20): fnab140. |
[86] | Wang KD, Gorman Z, Huang PC, et al. Trichoderma virens colonization of maize roots triggers rapid accumulation of 12-oxophytodienoate and two alpha-ketols in leaves as priming agents of induced systemic resistance[J]. Plant Signal Behav, 2020, 15(9): 1792187. |
[87] |
Martínez-Medina A, van Wees SCM, Pieterse CMJ. Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum[J]. Plant Cell Environ, 2017, 40(11): 2691-2705.
doi: 10.1111/pce.13016 URL |
[88] |
Miamoto A, Silva MTRE, Dias-Arieira CR, et al. Alternative products for Pratylenchus brachyurus and Meloidogyne javanica management in soya bean plants[J]. J Phytopathol, 2017, 165(10): 635-640.
doi: 10.1111/jph.12602 URL |
[89] |
Zhang SW, Gan YT, Ji WH, et al. Mechanisms and characterization of Trichoderma longibrachiatum T6 in suppressing nematodes(Heterodera avenae)in wheat[J]. Front Plant Sci, 2017, 8: 1491.
doi: 10.3389/fpls.2017.01491 URL |
[90] | Sharon E, Chet I, Bar-Eyal M. Biocontrol of root-knot nematodes by Trichoderma-modes of action[J]. IOBC/WPRS Bulletin, 2009, 42: 159-163. |
[91] |
Contreras-Cornejo HA, Macías-Rodríguez L, Del-Val E, et al. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants[J]. FEMS Microbiol Ecol, 2016, 92(4): fiw036.
doi: 10.1093/femsec/fiw036 URL |
[92] | Degani O, Rabinovitz O, Becher P, et al. Trichoderma longibrachiatum and Trichoderma asperellum confer growth promotion and protection against late wilt disease in the field[J]. J Fungi(Basel), 2021, 7(6): 444. |
[93] |
Zhang SW, Xu BL, Gan YT. Seed treatment with Trichoderma longibrachiatum T6 promotes wheat seedling growth under NaCl stress through activating the enzymatic and nonenzymatic antioxidant defense systems[J]. Int J Mol Sci, 2019, 20(15): 3729.
doi: 10.3390/ijms20153729 URL |
[94] | 扈进冬, 隋丽娜, 李玲, 等. 深绿木霉HB20111产挥发性物质及其功能分析[J]. 植物保护, 2021, 47(5): 58-63, 117. |
Hu JD, Sui LN, Li L, et al. Identification and functional analysis of volatile organic compounds from Trichoderma atroviride HB20111[J]. Plant Prot, 2021, 47(5): 58-63, 117. | |
[95] |
da Silva LR, Valadares-Inglis MC, Peixoto GHS, et al. Volatile organic compounds emitted by Trichoderma azevedoi promote the growth of lettuce plants and delay the symptoms of white mold[J]. Biol Control, 2021, 152: 104447.
doi: 10.1016/j.biocontrol.2020.104447 URL |
[96] |
Estrada-Rivera M, Rebolledo-Prudencio OG, Pérez-Robles DA, et al. Trichoderma histone deacetylase HDA-2 modulates multiple responses in Arabidopsis[J]. Plant Physiol, 2019, 179(4): 1343-1361.
doi: 10.1104/pp.18.01092 pmid: 30670606 |
[97] |
Marra R, Lombardi N, D'Errico G, et al. Application of Tricho-derma strains and metabolites enhances soybean productivity and nutrient content[J]. J Agric Food Chem, 2019, 67(7): 1814-1822.
doi: 10.1021/acs.jafc.8b06503 URL |
[98] |
Zhang FL, Chen C, Zhang F, et al. Trichoderma harzianum containing 1-aminocyclopropane-1-carboxylate deaminase and chitinase improved growth and diminished adverse effect caused by Fusarium oxysporum in soybean[J]. J Plant Physiol, 2017, 210: 84-94.
doi: 10.1016/j.jplph.2016.10.012 URL |
[99] |
Guzmán-Guzmán P, Porras-Troncoso MD, Olmedo-Monfil V, et al. Trichoderma species: versatile plant symbionts[J]. Phytopathology, 2019, 109(1): 6-16.
doi: 10.1094/PHYTO-07-18-0218-RVW pmid: 30412012 |
[100] | 梁志怀, 张屹, 吕刚, 等. 哈茨木霉 T2-16发酵产物中抗菌促长活性物质的初步研究[C]. 病虫害绿色防控与农产品质量安全, 2015, 592. |
Liang ZH, Zhang Y, Lv G, et al. Preliminary study on antibacterial and growth promoting substances in fermentation products of Trichoderma harzianum T2-16[C]. Green prevention and control of diseases and insect pests and quality and safety of agricultural products, 2015, 592. | |
[101] |
Vinale F, Strakowska J, Mazzei P, et al. Cremenolide, a new antifungal, 10-member lactone from Trichoderma cremeum with plant growth promotion activity[J]. Nat Prod Res, 2016, 30(22): 2575-2581.
doi: 10.1080/14786419.2015.1131985 URL |
[102] |
Zhao L, Zhang YQ. Effects of phosphate solubilization and phytohormone production of Trichoderma asperellum Q1 on promoting cucumber growth under salt stress[J]. J Integr Agric, 2015, 14(8): 1588-1597.
doi: 10.1016/S2095-3119(14)60966-7 URL |
[103] |
Contreras-Cornejo HA, Macías-Rodríguez L, Alfaro-Cuevas R, et al. Trichoderma spp. Improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na+ elimination through root exudates[J]. Mol Plant Microbe Interact, 2014, 27(6): 503-514.
doi: 10.1094/MPMI-09-13-0265-R URL |
[104] |
Ruocco M, Lanzuise S, Lombardi N, et al. Multiple roles and effects of a novel Trichoderma hydrophobin[J]. Mol Plant Microbe Interact, 2015, 28(2): 167-179.
doi: 10.1094/MPMI-07-14-0194-R URL |
[105] |
Yu ZY, Wang ZY, Zhang YZ, et al. Biocontrol and growth-promoting effect of Trichoderma asperellum TaspHu1 isolate from Juglans mandshurica rhizosphere soil[J]. Microbiol Res, 2021, 242: 126596.
doi: 10.1016/j.micres.2020.126596 URL |
[106] |
Guo RT, Ji SD, Wang ZY, et al. Trichoderma asperellum xylanases promote growth and induce resistance in poplar[J]. Microbiol Res, 2021, 248: 126767.
doi: 10.1016/j.micres.2021.126767 URL |
[107] |
Bharti MK, Sharma AK, Pandey AK, et al. Physiological and biochemical basis of growth suppressive and growth promotory effect of Trichoderma strains on tomato plants[J]. Natl Acad Sci Lett, 2012, 35(5): 355-359.
doi: 10.1007/s40009-012-0058-2 URL |
[108] |
Guo K, Sui YH, Li Z, et al. Trichoderma viride tv-1511 colonizes Arabidopsis leaves and promotes Arabidopsis growth by modulating the MAP kinase 6-mediated activation of plasma membrane H+-ATPase[J]. J Plant Growth Regul, 2020, 39(3): 1261-1276.
doi: 10.1007/s00344-019-10063-6 URL |
[109] |
Guo K, Sui YH, Li Z, et al. Colonization of Trichoderma viride Tv-1511 in peppermint(Mentha × piperita L.)roots promotes essential oil production by triggering ROS-mediated MAPK activation[J]. Plant Physiol Biochem, 2020, 151: 705-718.
doi: 10.1016/j.plaphy.2020.03.042 URL |
[110] |
Tandon A, Fatima T, Anshu, et al. Phosphate solubilization by Trichoderma koningiopsis(NBRI-PR5)under abiotic stress conditions[J]. J King Saud Univ Sci, 2020, 32(1): 791-798.
doi: 10.1016/j.jksus.2019.02.001 URL |
[111] | 李瑞霞, 陈巍, 蔡枫, 等. 贵州木霉NJAU4742生物有机肥对番茄种植的影响[J]. 南京农业大学学报, 2017, 40(3): 464-472. |
Li RX, Chen W, Cai F, et al. Effects of Trichoderma-enriched biofertilizer on tomato plant growth and fruit quality[J]. J Nanjing Agric Univ, 2017, 40(3): 464-472. | |
[112] | 李正洲, 丁绪, 赖茅田, 等. 外施木霉对甜瓜土壤酶活性的影响[J]. 黑龙江农业科学, 2021(12): 53-57. |
Li ZZ, Ding X, Lai MT, et al. Effects of Trichoderma on soil enzyme activity with different stage[J]. Heilongjiang Agric Sci, 2021(12): 53-57. | |
[113] | 祝静, 于存. 长枝木霉菌肥对玉米生长、土壤肥力和根际微生物的影响[J]. 生物技术通报, 2022, 38(4): 230-241. |
Zhu J, Yu C. Effects of Trichoderma longibrachiatum on maize growth, soil fertility and rhizosphere microorganism[J]. Biotechnol Bull, 2022, 38(4): 230-241. | |
[114] |
Meng XH, Miao YZ, Liu QM, et al. TgSWO from Trichoderma guizhouense NJAU4742 promotes growth in cucumber plants by modifying the root morphology and the cell wall architecture[J]. Microb Cell Fact, 2019, 18(1): 148.
doi: 10.1186/s12934-019-1196-8 URL |
[115] |
Fernando D, Milagrosa S, Francisco C, et al. Biostimulant activity of Trichoderma saturnisporum in melon(Cucumis melo)[J]. HortScience, 2018, 53(6): 810-815.
doi: 10.21273/HORTSCI13006-18 URL |
[116] | 尤佳琪, 杨红娟, 朱丽华, 等. 拟康宁木霉T-51促进西瓜种子萌发效果[J]. 北方园艺, 2020(18): 25-31. |
You JQ, Yang HJ, Zhu LH, et al. Effects of watermelon seed germination promotion by Trichoderma koningiopsis T-51[J]. North Hortic, 2020(18): 25-31. | |
[117] | 霍雪雪, 王庆玲, 张豪, 等. 绿色木霉Tv-1511对黄瓜的促生增产作用及防病效果[J]. 南京农业大学学报, 2022, 45(3): 553-561. |
Huo XX, Wang QL, Zhang H, et al. Effect of Trichoderma viride Tv-1511 on growth promotion and yield increase of cucumber and disease control[J]. J Nanjing Agric Univ, 2022, 45(3): 553-561. | |
[118] |
Fanelli F, Liuzzi VC, Logrieco AF, et al. Genomic characterization of Trichoderma atrobrunneum(T. harzianum species complex)ITEM 908: insight into the genetic endowment of a multi-target biocontrol strain[J]. BMC Genomics, 2018, 19(1): 662.
doi: 10.1186/s12864-018-5049-3 URL |
[119] |
Wu Q, Zhang LD, Xia H, et al. Omics for understanding synergistic action of validamycin A and Trichoderma asperellum GDFS1009 against maize sheath blight pathogen[J]. Sci Rep, 2017, 7: 40140.
doi: 10.1038/srep40140 URL |
[120] | 刘晓宇, 王媛媛, 范海燕, 等. 桔绿木霉Snef1910联合噻唑膦防治根结线虫减施增效研究[J]. 沈阳农业大学学报, 2020, 51(6): 755-761. |
Liu XY, Wang YY, Fan HY, et al. Application of Trichoderma citrinovirid Snef1910 in reducing application and increasing efficiency of fosthiazate against tomato root knot nematode disease[J]. J Shenyang Agric Univ, 2020, 51(6): 755-761. | |
[121] | 段玉玺, 靳莹莹, 王胜君, 等. 生防菌株Snef85的鉴定及其发酵液对不同种类线虫的毒力[J]. 植物保护学报, 2008, 35(2): 132-136. |
Duan YX, Jin YY, Wang SJ, et al. Identification of biocontrol strain Snef85 and virulence of fermented broth on different Nematodes[J]. J Plant Prot, 2008, 35(2): 132-136. | |
[122] | 罗宁, 李惠霞, 刘永刚, 等. 甘肃陇东大豆孢囊线虫田间侵染动态[J]. 植物保护, 2022, 48(2): 214-219, 231. |
Luo N, Li HX, Liu YG, et al. Field infection dynamics of soybean cyst nematode in east of Gansu Province[J]. Plant Prot, 2022, 48(2): 214-219, 231. | |
[123] | Khan M, Haque Z. Soil application of Pseudomonas fluorescens and Trichoderma harzianum reduces root-knot nematode, Meloidogyne incognita, on tobacco[J]. Phytopathol Mediterr, 2011, 50: 257-266. |
[124] | 徐文, 黄媛媛, 黄亚丽, 等. 木霉-植物互作机制的研究进展[J]. 中国生物防治学报, 2017, 33(3): 408-414. |
Xu W, Huang YY, Huang YL, et al. Advances on mechanism of Trichoderma-plant interaction[J]. Chin J Biol Control, 2017, 33(3): 408-414. | |
[125] | 尤佳琪, 吴明德, 李国庆. 木霉在植物病害生物防治中的应用及作用机制[J]. 中国生物防治学报, 2019, 35(6): 966-976. |
You JQ, Wu MD, Li GQ. Application and mechanism of Trichoderma in biological control of plant disease[J]. Chin J Biol Control, 2019, 35(6): 966-976. | |
[126] | 李登辉, 翟明娟, 史倩倩, 等. 南方根结线虫Me3毒性与非毒性群体对寄主趋向性和侵染能力的比较[J]. 植物病理学报, 2018, 48(1): 128-136. |
Li DH, Zhai MJ, Shi QQ, et al. Comparison of the chemotaxis and the infection ability of Me3 virulent and avirulent populations of Meloidogyne incognita to host root[J]. Acta Phytopathol Sin, 2018, 48(1): 128-136. | |
[127] |
Shenouda ML, Cox RJ. Molecular methods unravel the biosynthetic potential of Trichoderma species[J]. RSC Adv, 2021, 11(6): 3622-3635.
doi: 10.1039/d0ra09627j pmid: 35424278 |
[128] |
di Lelio I, Coppola M, Comite E, et al. Temperature differentially influences the capacity of Trichoderma species to induce plant defense responses in tomato against insect pests[J]. Front Plant Sci, 2021, 12: 678830.
doi: 10.3389/fpls.2021.678830 URL |
[129] |
Forghani F, Hajihassani A. Recent advances in the development of environmentally benign treatments to control root-knot nematodes[J]. Front Plant Sci, 2020, 11: 1125.
doi: 10.3389/fpls.2020.01125 pmid: 32793271 |
[130] | 陈立杰, 朱艳, 刘彬, 等. 连作和轮作对大豆胞囊线虫群体数量及土壤线虫群落结构的影响[J]. 植物保护学报, 2007, 34(4): 347-352. |
Chen LJ, Zhu Y, Liu B, et al. Influence of continuous cropping and rotation on soybean cyst nematode and soil nematode community structure[J]. J Plant Prot, 2007, 34(4): 347-352. | |
[131] |
马玉琴, 魏偲, 茆振川, 等. 生防型菌肥对黄瓜生长及根结线虫病的影响[J]. 中国农业科学, 2016, 49(15): 2945-2954.
doi: 10.3864/j.issn.0578-1752.2016.15.009 |
Ma YQ, Wei C, Mao ZC, et al. Effects of bioorganic fertilizers with compound microbes on cucumber and root-knot nematode[J]. Sci Agric Sin, 2016, 49(15): 2945-2954. | |
[132] | 王海明. 防控南方根结线虫的木霉菌肥研制[D]. 沈阳: 沈阳农业大学, 2020. |
Wang HM. Development of Trichoderma citrinoviride biocontrol manure against Meloidogyne incognita[D]. Shenyang: Shenyang Agricultural University, 2020. |
[1] | 褚睿, 李昭轩, 张学青, 杨东亚, 曹行行, 张雪艳. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271. |
[2] | 任沛东, 彭健玲, 刘圣航, 姚姿婷, 朱桂宁, 陆光涛, 李瑞芳. 沙福芽孢杆菌GX-H6的分离鉴定及对水稻细菌性条斑病的防病效果[J]. 生物技术通报, 2023, 39(5): 243-253. |
[3] | 章乐乐, 王冠, 柳凤, 胡汉桥, 任磊. 芒果炭疽病拮抗菌分离、鉴定及生防机制研究[J]. 生物技术通报, 2023, 39(4): 277-287. |
[4] | 易希, 廖红东, 郑井元. 植物内生真菌防治根结线虫研究进展[J]. 生物技术通报, 2023, 39(3): 43-51. |
[5] | 王伟宸, 赵进, 黄薇颐, 郭芯竹, 李婉颖, 张卓. 芽胞杆菌代谢产物防治三种常见植物病原真菌的研究进展[J]. 生物技术通报, 2023, 39(3): 59-68. |
[6] | 杨东亚, 祁瑞雪, 李昭轩, 林薇, 马慧, 张雪艳. 黄瓜茄病镰刀菌拮抗芽孢杆菌的筛选、鉴定及促生效果[J]. 生物技术通报, 2023, 39(2): 211-220. |
[7] | 马赛买, 李同源, 马燕军, 韩富军, 彭海, 孔维宝. 几丁质酶在农作物病虫害生物防治中的研究进展[J]. 生物技术通报, 2023, 39(10): 29-40. |
[8] | 郭宾会, 宋丽. 大豆孢囊线虫侵染对乙烯合成及信号传导基因表达调控的研究[J]. 生物技术通报, 2022, 38(8): 150-158. |
[9] | 祖雪, 周瑚, 朱华珺, 任佐华, 刘二明. 枯草芽孢杆菌K-268的分离鉴定及对水稻稻瘟病的防病效果[J]. 生物技术通报, 2022, 38(6): 136-146. |
[10] | 祝静, 于存. 长枝木霉菌肥对玉米生长、土壤肥力和根际微生物的影响[J]. 生物技术通报, 2022, 38(4): 230-241. |
[11] | 严聪文, 苏代发, 代庆忠, 张振荣, 田云霞, 董琼娥, 周文星, 陈杉艳, 童江云, 崔晓龙. 草莓病害的生物防治研究进展[J]. 生物技术通报, 2022, 38(12): 73-87. |
[12] | 武玉环, 彭焕, 葛逢勇, 彭德良, 刘大群, 李亚宁. 5株生防真菌对孢囊线虫的杀线活性测定[J]. 生物技术通报, 2022, 38(11): 220-226. |
[13] | 陈倩, 张露源, 陈伯昌, 吴海燕. 大豆孢囊线虫生防菌株Myrothecium verrucaria ZW-2发酵条件优化及活性物质分析[J]. 生物技术通报, 2021, 37(7): 127-136. |
[14] | 韩少杰, 郑经武. 寄主对大豆孢囊线虫抗性相关基因功能研究进展[J]. 生物技术通报, 2021, 37(7): 14-24. |
[15] | 金娜, 王学艳, 刘倩, 彭德良, 彭焕, 简恒. 土壤生物熏蒸对蔬菜根结线虫及土壤线虫群落的影响[J]. 生物技术通报, 2021, 37(7): 156-163. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||