生物技术通报 ›› 2023, Vol. 39 ›› Issue (6): 325-334.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1398
马钰静(), 段春辉, 贺名扬, 张英杰, 杨若晨, 王泳, 刘月琴()
收稿日期:
2022-11-14
出版日期:
2023-06-26
发布日期:
2023-07-07
通讯作者:
刘月琴,女,教授,研究方向:羊繁殖调控;E-mail: Liuyueqin66@126.com作者简介:
马钰静,女,硕士研究生,研究方向:动物繁殖学;E-mail: mayujing66@126.com
基金资助:
MA Yu-jing(), DUAN Chun-hui, HE Ming-yang, ZHANG Ying-jie, YANG Ruo-chen, WANG Yong, LIU Yue-qin()
Received:
2022-11-14
Published:
2023-06-26
Online:
2023-07-07
摘要:
本文旨在探究G0S2基因对绵羊卵巢颗粒细胞增殖,雌激素(E2)和孕酮(P4)分泌,以及类固醇分泌相关基因和细胞凋亡基因表达的影响。采集小尾寒羊新鲜卵巢,用割吸法收集中小卵泡的卵泡液,离心分离颗粒细胞,分为试验组和对照组,试验组采用CRISPR-Cas9基因编辑技术敲除G0S2基因,获得重组表达载体PX458-sgRNA-G0S2转染至颗粒细胞;对照组转染PX458质粒至颗粒细胞。检测颗粒细胞活力和凋亡情况,以及E2和P4水平及相关基因的表达量。结果表明,试验组G0S2 mRNA的表达量及蛋白水平极显著低于对照组(P<0.01),分别降低了66%和70%,G0S2敲除成功。试验组颗粒细胞的增殖活力显著高于对照组(P<0.05),细胞凋亡率极显著下降56%(P<0.01)。试验组E2水平显著高于对照组(P<0.05),P4水平显著低于对照组(P<0.05)。试验组颗粒细胞中StAR、CYP11、3β-HSD的表达量极显著低于对照组(P<0.01),CYP19的表达量极显著高于对照组(P<0.01)。与对照组相比,试验组颗粒细胞中Caspase3和Bax的表达极显著下调(P<0.01),Bcl-2的表达极显著上调(P<0.01)。上述结果表明,敲除G0S2基因能促进在绵羊卵巢颗粒细胞的增殖,抑制其凋亡,通过下调StAR、CYP11、3β-HSD,上调CYP19的表达影响E2和P4的分泌。
马钰静, 段春辉, 贺名扬, 张英杰, 杨若晨, 王泳, 刘月琴. 敲除G0S2基因对绵羊卵巢颗粒细胞增殖、类固醇激素及相关基因表达的影响[J]. 生物技术通报, 2023, 39(6): 325-334.
MA Yu-jing, DUAN Chun-hui, HE Ming-yang, ZHANG Ying-jie, YANG Ruo-chen, WANG Yong, LIU Yue-qin. Effects of Knockout of G0S2 Gene in Ovarian Granulosa Cell Proliferation, Steroids Hormones and Related Gene Expression[J]. Biotechnology Bulletin, 2023, 39(6): 325-334.
引物名称Primer name | 序列Sequence(5'-3') |
---|---|
O-sp-G0S2-E1-1F | caccGTGCGAATGTACCTGCTGGG |
O-sp-G0S2-E1-1R | aaacCCCAGCAGGTACATTCGCAC |
表1 G0S2 sgRNA引物序列
Table 1 G0S2 sgRNA primer sequences
引物名称Primer name | 序列Sequence(5'-3') |
---|---|
O-sp-G0S2-E1-1F | caccGTGCGAATGTACCTGCTGGG |
O-sp-G0S2-E1-1R | aaacCCCAGCAGGTACATTCGCAC |
引物名称Primer name | 序列Sequence(5'-3') | 退火温度Annealing temperature/℃ | 片段大小Fragment length/bp |
---|---|---|---|
GAPDH | F: GGTCGGAGTGAACGGATTTG | 60 | 222 |
R: CTTGACTGTGCCGTGGAACTT | |||
G0S2 | F: GCGAAGCTGGTGCGAATGTAC | 60 | 154 |
R: CCTCCAGTGGCTTGCCTTGATC | |||
Bcl-2 | F: GATGACCGAGTACCTGAACCG | 60 | 120 |
R: GACAGCCAGGAGAAATCAAACA | |||
Caspase3 | F: GCTACAAGGTCCGTTATGCC | 60 | 128 |
R: GATGCTGCCGTATTCGTTCTC | |||
Bax | F: TGCTCACTGCCTCACTCACC | 60 | 179 |
R: CCCAAGACCACTCCTCCCTA | |||
StAR | F: ATTCAGGAGGCAAAGAGCAGC | 60 | 270 |
R: TCGGGTAAGGAAAATGGGTCA | |||
3β-HSD | F: CAGTCTATGTTGGCAATGTGGC | 60 | 283 |
R: CGGTTGAAGCAGGGGTGGTAT | |||
CYP11 | F: GTTTCGCTTTGCCTTTGAGTC | 60 | 120 |
R: ACAGTTCTGGAGGGAGGTTGA | |||
CYP19 | F: GCTTTTGGAAGTGCTGAACCC | 60 | 379 |
R: CATGCCGATGAACTGCAACC |
表2 RT-qCR引物序列
Table 2 RT-qCR primers’ sequences
引物名称Primer name | 序列Sequence(5'-3') | 退火温度Annealing temperature/℃ | 片段大小Fragment length/bp |
---|---|---|---|
GAPDH | F: GGTCGGAGTGAACGGATTTG | 60 | 222 |
R: CTTGACTGTGCCGTGGAACTT | |||
G0S2 | F: GCGAAGCTGGTGCGAATGTAC | 60 | 154 |
R: CCTCCAGTGGCTTGCCTTGATC | |||
Bcl-2 | F: GATGACCGAGTACCTGAACCG | 60 | 120 |
R: GACAGCCAGGAGAAATCAAACA | |||
Caspase3 | F: GCTACAAGGTCCGTTATGCC | 60 | 128 |
R: GATGCTGCCGTATTCGTTCTC | |||
Bax | F: TGCTCACTGCCTCACTCACC | 60 | 179 |
R: CCCAAGACCACTCCTCCCTA | |||
StAR | F: ATTCAGGAGGCAAAGAGCAGC | 60 | 270 |
R: TCGGGTAAGGAAAATGGGTCA | |||
3β-HSD | F: CAGTCTATGTTGGCAATGTGGC | 60 | 283 |
R: CGGTTGAAGCAGGGGTGGTAT | |||
CYP11 | F: GTTTCGCTTTGCCTTTGAGTC | 60 | 120 |
R: ACAGTTCTGGAGGGAGGTTGA | |||
CYP19 | F: GCTTTTGGAAGTGCTGAACCC | 60 | 379 |
R: CATGCCGATGAACTGCAACC |
图2 绵羊卵巢颗粒细胞FSHR免疫荧光染色(400×) A:FSHR染色绵羊卵巢颗粒细胞;B:DAPI染色绵羊卵巢颗粒细胞细胞核;C:叠加染色效果
Fig. 2 FSHR immunofluorescence staining of ovarian granulosa cells in sheep(400×) A: FSHR stained ovarian granulosa cells of sheep. B: DAPI stained ovarian granulosa cell nuclei of sheep. C: Overlay dyeing effect
图3 质粒载体转染绵羊卵巢颗粒细胞的效果(400×) A:转染空白PX458质粒的卵巢颗粒细胞绿色荧光表达;B:转染PX458-sgRNA-G0S2重组质粒的卵巢颗粒细胞绿色荧光表达;C:明场下未经过转染的空白卵巢颗粒细胞
Fig. 3 Effects of plasmid vector transfection of the ovarian granulosa cells in sheep(400×) A: Green fluorescence expression of ovarian granulosa cells transfected with blank PX458 plasmid. B: Green fluorescence expression of ovarian granulosa cells transfected with PX458-sgRNA-G0S2 recombinant plasmid. C: Untransfected blank ovarian granulosa cells in brightfield
图4 G0S2基因敲除对卵巢颗粒细胞中的G0S2 mRNA和蛋白表达的影响 A:G0S2敲除后mRNA表达结果统计;B:G0S2敲除后蛋白表达结果统计;C:G0S2敲除后蛋白表达灰度图;* P<0.05,** P<0.01,下同
Fig. 4 Effects of G0S2 gene knockout on the G0S2 mRNA and protein expression in ovarian granulosa cells A: Statistics of mRNA expression results after G0S2 knockout. B: Statistics of protein expression results after G0S2 knockout. C: Grayscale plot of protein expression after G0S2 knockout; * P<0.05, **P<0.01. The same below
图5 G0S2基因敲除对卵巢颗粒细胞增殖活力和细胞凋亡的影响 A:G0S2-Knockout组流式细胞凋亡检测图;B:Control组流式细胞凋亡检测图;C:流式细胞凋亡结果统计;D:细胞增殖活力结果统计
Fig. 5 Effects of G0S2 gene knockout in ovarian granulosa cell proliferation viability and apoptosis A: Flow cytometry apoptosis assay of G0S2-Knockout group. B: Control group flow cytometry apoptosis assay map. C: Flow cytometry apoptosis result statistics. D: Cell proliferation viability result statistics
图7 G0S2基因敲除对卵巢颗粒细胞StAR、CYP11、3β-HSD、CYP19 mRNA表达的影响
Fig. 7 Effects of G0S2 knockout on the StAR, CYP11, 3β-HSD, CYP19 mRNA expressions in ovarian granulosa cells
图8 G0S2基因敲除对卵巢颗粒细胞Caspase3、Bax、Bcl-2 mRNA表达的影响
Fig. 8 Effects of G0S2 knockout on the Caspase3, Bax and Bcl-2 mRNA expressions in ovarian granulosa cells
[4] |
Siderovski DP, Blum S, Forsdyke RE, et al. A set of human putative lymphocyte G0/G1 switch genes includes genes homologous to rodent cytokine and zinc finger protein-encoding genes[J]. DNA Cell Biol, 1990, 9(8): 579-587.
pmid: 1702972 |
[5] | 杜楠楠, 汪引芳, 张鹏, 等. G0S2基因的相关研究进展[J]. 世界最新医学信息文摘, 2020, 20(11): 111-113. |
Du NN, Wang YF, Zhang P, et al. Research progress on G0S2 gene[J]. World Latest Med Inf, 2020, 20(11): 111-113. | |
[6] | 祝铖. G0S2在食管癌组织中的表达变化及其对食管癌细胞增殖、凋亡的影响[D]. 十堰: 湖北医药学院, 2018. |
Zhu C. A study on changes of G0S2 expression in esophageal carcinoma and its effect on proliferation and apoptosis of esophageal cancer cells[D]. Shiyan: Hubei University of Medicine, 2018. | |
[7] |
Russell L, Forsdyke DR. A human putative lymphocyte G0/G1 switch gene containing a CpG-rich Island encodes a small basic protein with the potential to be phosphorylated[J]. DNA Cell Biol, 1991, 10(8): 581-591.
pmid: 1930693 |
[8] |
Park TS, Park J, Lee JH, et al. Disruption of G0/G1 switch gene 2(G0S2)reduced abdominal fat deposition and altered fatty acid composition in chicken[J]. FASEB J, 2019, 33(1): 1188-1198.
doi: 10.1096/fj.201800784R pmid: 30085885 |
[9] | 金彩燕, 吴金恩, 何童童, 等. 基于CRISPR/Cas9基因编辑系统构建敲除DDX5基因的猪肾细胞系[J]. 中国兽医科学, 2021, 51(10): 1259-1263. |
Jin CY, Wu JE, He TT, et al. Construction of DDX5 gene knockout of PK-15 cell cline by CRISPR/Cas9[J]. Chin Vet Sci, 2021, 51(10): 1259-1263. | |
[10] |
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823.
doi: 10.1126/science.1231143 pmid: 23287718 |
[11] |
Crispo M, Mulet AP, Tesson L, et al. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes[J]. PLoS One, 2015, 10(8): e0136690.
doi: 10.1371/journal.pone.0136690 URL |
[1] | 吴玉萍, 赵茴茴, 周玉霞, 等. 颗粒细胞在卵母细胞发育成熟中的作用[J]. 国际生殖健康/计划生育杂志, 2017, 36(6): 503-506. |
Wu YP, Zhao HH, Zhou YX, et al. The role of granulosa cells in oocyte maturation[J]. J Int Reproductive Health/family Plan, 2017, 36(6): 503-506. | |
[2] | 马丽珠, 郑宇新, 王立强, 等. 牛卵泡颗粒细胞中生长相关基因的表达研究[J]. 家畜生态学报, 2019, 40(9): 56-60. |
Ma LZ, Zheng YX, Wang LQ, et al. The expression of growth-related genes in bovine ovarian granulosa cells[J]. J Domest Animal Ecol, 2019, 40(9): 56-60. | |
[3] |
Matsuda F, Inoue N, Manabe N, et al. Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells[J]. J Reprod Dev, 2012, 58(1): 44-50.
doi: 10.1262/jrd.2011-012 URL |
[12] | 堵晶晶, 李强, 程霄, 等. CRISPR/Cas系统的研究进展及其在畜禽遗传改良中的应用前景[J]. 中国生物工程杂志, 2016, 36(7): 92-103. |
Du JJ, Li Q, Cheng X, et al. Research progress in CRISPR/cas system and the prospect in animal genetic improvement[J]. China Biotechnol, 2016, 36(7): 92-103. | |
[13] |
Whitworth KM, Lee K, Benne JA, et al. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos[J]. Biol Reprod, 2014, 91(3): 78.
doi: 10.1095/biolreprod.114.121723 pmid: 25100712 |
[14] |
Whitworth KM, Rowland RRR, Ewen CL, et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus[J]. Nat Biotechnol, 2016, 34(1): 20-22.
doi: 10.1038/nbt.3434 pmid: 26641533 |
[15] | 李晓聪. CRISPR/Cas9介导绒山羊Tβ4基因定点敲入的研究[D]. 呼和浩特: 内蒙古大学, 2017. |
Li XC. Research of Cashmere Tβ4 gene knock-in via CRISPR/Cas9[D]. Hohhot: Inner Mongolia University, 2017. | |
[16] | 张越东. Pin1抑制由G0S2调节的APL细胞的凋亡[D]. 福州: 福建医科大学, 2016. |
Zhang YD. Pin1 inhibit the apoptosis of APL cells by down-regulating the expression of G0S2 gene[D]. Fuzhou: Fujian Medical University, 2016. | |
[17] |
Yamada T, Park CS, Burns A, et al. The cytosolic protein G0S2 maintains quiescence in hematopoietic stem cells[J]. PLoS One, 2012, 7(5): e38280.
doi: 10.1371/journal.pone.0038280 URL |
[18] |
Choi H, Lee H, Kim TH, et al. G0/G1 switch gene 2 has a critical role in adipocyte differentiation[J]. Cell Death Differ, 2014, 21(7): 1071-1080.
doi: 10.1038/cdd.2014.26 pmid: 24583640 |
[19] |
Yamada T, Park CS, Shen Y, et al. G0S2 inhibits the proliferation of K562 cells by interacting with nucleolin in the cytosol[J]. Leuk Res, 2014, 38(2): 210-217.
doi: 10.1016/j.leukres.2013.10.006 URL |
[20] |
Heckmann BL, Zhang XD, Xie XT, et al. The G0/G1 switch gene 2(G0S2): regulating metabolism and beyond[J]. Biochim Biophys Acta, 2013, 1831(2): 276-281.
doi: 10.1016/j.bbalip.2012.09.016 pmid: 23032787 |
[21] |
Verner J, Kabathova J, Tomancova A, et al. Gene expression profiling of acute graft-vs-host disease after hematopoietic stem cell transplantation[J]. Exp Hematol, 2012, 40(11): 899-905.e5.
doi: 10.1016/j.exphem.2012.06.011 pmid: 22771791 |
[22] |
Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins[J]. Nat Rev Mol Cell Biol, 2019, 20(3): 175-193.
doi: 10.1038/s41580-018-0089-8 |
[23] | 杨雨江, 姜怀志, 常青, 等. 辽宁绒山羊胎儿皮肤中Bcl-2/Bax基因表达变化的研究[J]. 中国畜牧杂志, 2013, 49(3): 21-23. |
Yang YJ, Jiang HZ, Chang Q, et al. Study on the change of Bcl-2/Bax gene expression in fetal skin of Liaoning Cashmere goat[J]. Chin J Animal Sci, 2013, 49(3): 21-23. | |
[24] |
Jin L, Ren L, Lu J, et al. CXCL12 and its receptors regulate granulosa cell apoptosis in PCOS rats and human KGN tumor cells[J]. Reproduction, 2021, 161(2): 145-157.
doi: 10.1530/REP-20-0451 pmid: 33258800 |
[25] |
Kurowska P, Mlyczyńska E, Dawid M, et al. In vitro effects of vaspin on Porcine granulosa cell proliferation, cell cycle progression, and apoptosis by activation of GRP78 receptor and several kinase signaling pathways including MAP3/1, AKT, and STAT3[J]. Int J Mol Sci, 2019, 20(22): 5816.
doi: 10.3390/ijms20225816 URL |
[26] |
Heckmann BL, Zhang XD, Xie XT, et al. The G0/G1 switch gene 2(G0S2): regulating metabolism and beyond[J]. Biochim Biophys Acta, 2013, 1831(2): 276-281.
doi: 10.1016/j.bbalip.2012.09.016 pmid: 23032787 |
[27] |
Magun R, Boone DL, Tsang BK, et al. The effect of adipocyte differentiation on the capacity of 3T3-L1 cells to undergo apoptosis in response to growth factor deprivation[J]. Int J Obes Relat Metab Disord, 1998, 22(6): 567-571.
doi: 10.1038/sj.ijo.0800626 pmid: 9665678 |
[28] |
Welch C, Santra MK, El-Assaad W, et al. Identification of a protein, G0S2, that lacks Bcl-2 homology domains and interacts with and antagonizes Bcl-2[J]. Cancer Res, 2009, 69(17): 6782-6789.
doi: 10.1158/0008-5472.CAN-09-0128 pmid: 19706769 |
[29] |
Nie XW. Effect of Hyperin and Icariin on steroid hormone secretion in rat ovarian granulosa cells[J]. Clin Chimica Acta, 2019, 495: 646-651.
doi: 10.1016/j.cca.2018.05.004 URL |
[30] |
Zhai MJ, Xie YF, Liang HH, et al. Comparative profiling of differentially expressed microRNAs in estrous ovaries of Kazakh sheep in different seasons[J]. Gene, 2018, 664: 181-191.
doi: S0378-1119(18)30393-7 pmid: 29704632 |
[31] | 李碧筠, 黄思艺, 王钰锟, 等. SMAD7对山羊卵泡颗粒细胞增殖、凋亡的影响[J]. 畜牧兽医学报, 2022, 53(8): 2548-2557. |
Li BJ, Huang SY, Wang YK, et al. Effects of SMAD7 on proliferation and apoptosis of goat follicular granulosa cells[J]. Acta Vet Zootechnica Sin, 2022, 53(8): 2548-2557. | |
[32] |
Ma L, Robinson LN, Towle HC. ChREBP*Mlx is the principal mediator of glucose-induced gene expression in the liver[J]. J Biol Chem, 2006, 281(39): 28721-28730.
doi: 10.1074/jbc.M601576200 pmid: 16885160 |
[33] | 张宝, 孙磊, 郑阳, 等. 性激素结合球蛋白、胰岛素信号转导蛋白和葡萄糖转运蛋白在妊娠期糖尿病胎盘组织中的表达及相关性分析[J]. 中国医科大学学报, 2017, 46(2): 97-102. |
Zhang B, Sun L, Zheng Y, et al. Expression and correlation of sex hormone-binding globulin, insulin signal transduction and glucose transporter proteins in the gestational diabetes mellitus placental tissue[J]. J China Med Univ, 2017, 46(2): 97-102. | |
[34] | 苏红, 包宇航, 郑仁东, 等. 女性性激素与糖代谢关系的研究进展[J]. 临床医学研究与实践, 2022, 7(21): 196-198. |
Su H, Bao YH, Zheng RD, et al. Research progress on the relationship between female sex hormones and glucose metabolism[J]. Clin Res Pract, 2022, 7(21): 196-198. | |
[35] | Díaz A, López-Grueso R, Gambini J, et al. Sex differences in age-associated type 2 diabetes in rats-role of estrogens and oxidative stress[J]. Oxid Med Cell Longev, 2019, 2019: 6734836. |
[36] | 何宇新. NeuroD1通过葡萄糖-6-磷酸脱氢酶增强磷酸戊糖代谢途径促进结肠癌细胞增殖[D]. 重庆: 重庆大学, 2020. |
He YX. NeuroD1 promotes proliferation of colorectal carcinoma cell through enhancing the pentose phosphate pathway via glucose-6-phosphate dehydrogenase[D]. Chongqing: Chongqing University, 2020. | |
[37] |
Lei LJ, Han F, Cui QY, et al. IRS2 depletion inhibits cell proliferation and decreases hormone secretion in mouse granulosa cells[J]. J Reprod Dev, 2018, 64(5): 409-416.
doi: 10.1262/jrd.2018-055 URL |
[38] |
Bakhshalizadeh S, Amidi F, Alleyassin A, et al. Modulation of steroidogenesis by vitamin D3 in granulosa cells of the mouse model of polycystic ovarian syndrome[J]. Syst Biol Reprod Med, 2017, 63(3): 150-161.
doi: 10.1080/19396368.2017.1296046 pmid: 28345956 |
[39] | 夏露. 胆固醇转运相关基因在鹅卵泡类固醇激素合成中的作用研究[D]. 雅安: 四川农业大学, 2013. |
Xia L. Study on the role of cholesterol trafficking genes related to steroid hormones synthesis in goose follicles[D]. Ya'an: Sichuan Agricultural University, 2013. | |
[40] |
Fang LL, Li YR, Wang SJ, et al. Melatonin induces progesterone production in human granulosa-lutein cells through upregulation of StAR expression[J]. Aging, 2019, 11(20): 9013-9024.
doi: 10.18632/aging.v11i20 URL |
[41] | 杜婷, 任春娥, 韩海燕, 等. 卵泡液中颗粒细胞FSHR的表达与体外受精-胚胎移植的相关研究[J]. 潍坊医学院学报, 2014, 36(3): 217-219, 222. |
Du T, Ren CE, Han HY, et al. Study of the relationship between the expression of FSH receptor on granulosa cells and in vitro fertilization and embryo transfer(IVF-ET)[J]. Acta Acad Med Weifang, 2014, 36(3): 217-219, 222. | |
[42] |
Chakravarthi VP, Ratri A, Masumi S, et al. Granulosa cell genes that regulate ovarian follicle development beyond the antral stage: the role of estrogen receptor Β[J]. Mol Cell Endocrinol, 2021, 528: 111212.
doi: 10.1016/j.mce.2021.111212 URL |
[43] |
Li M, Zu N, Zhang CS, et al. Orexin A promotes granulosa cell secretion of progesterone in sheep[J]. Iran J Vet Res, 2019, 20(2): 136-142.
pmid: 31531037 |
[44] |
Liu J, Han YY, Tian Y, et al. Regulation by 3, 5, 3'-tri-iodothyronine and FSH of cytochrome P450 family 19(CYP19)expression in mouse granulosa cells[J]. Reprod Fertil Dev, 2018, 30(9): 1225.
doi: 10.1071/RD17362 URL |
[45] | 王立斌, 王萌, 孙莹, 等. CYP19A1调控内源性雌激素合成促进牦牛COCs细胞自噬和早期发育能力[J]. 畜牧兽医学报, 2022, 53(12): 4283-4295. |
Wang LB, Wang M, Sun Y, et al. CYP19A1 regulates endogenous estrogen synthesis and promotes autophagy and early development of yak COCs cells[J]. Acta Vet Zootechnica Sin, 2022, 53(12): 4283-4295. | |
[46] | 甘超. 鹅GnIH及其受体基因的克隆、组织表达以及在颗粒细胞中的研究[D]. 雅安: 四川农业大学, 2014. |
Gan C. Cloning of goose GnIH and its receptor, the gene expression and research in granulosa cells[D]. Ya'an: Sichuan Agricultural University, 2014. |
[1] | 杨小峰, 秦小伟, 郭泽媛, 吕丽华. 原花青素对体外培养绵羊卵泡颗粒细胞增殖的影响[J]. 生物技术通报, 2022, 38(9): 258-263. |
[2] | 杨昕冉, 王建芳, 马鑫浩, 昝林森. m6A甲基化修饰相关酶基因在牛脂肪生成中的表达分析[J]. 生物技术通报, 2022, 38(7): 70-79. |
[3] | 盛雪晴, 赵楠, 林亚秋, 陈定双, 王瑞龙, 李傲, 王永, 李艳艳. 山羊ZNF32的克隆及表达分析[J]. 生物技术通报, 2022, 38(12): 300-311. |
[4] | 王树萱, 向钢, 马小京, 于晶. Galectin-1的4T1乳腺癌过表达细胞的构建及其对增殖和转移的影响[J]. 生物技术通报, 2022, 38(11): 97-103. |
[5] | 金秋霞, 王思宏, 金丽华. 果蝇肠道干细胞及肠道菌群的研究进展[J]. 生物技术通报, 2021, 37(4): 245-250. |
[6] | 郑芳芳, 林俊生. 增殖诱导配体蛋白的核酸适配体筛选与特异性研究[J]. 生物技术通报, 2021, 37(10): 196-202. |
[7] | 尹晓梦, 曹雪玮, 王富军, 赵健, 张惠展. 雷公藤红素与凋亡蛋白突变体通过强化Nur77诱发凋亡通路发挥协同抗肿瘤作用[J]. 生物技术通报, 2020, 36(7): 119-129. |
[8] | 邹坤, 路丽丽, Collins Asiamah Amponsah, 薛缘, 张少伟, 苏瑛, 赵志辉. 家禽卵泡闭锁机制的研究进展[J]. 生物技术通报, 2020, 36(4): 185-191. |
[9] | 宋绍征, 陆睿, 张婷, 何正义, 吴赵曼秋, 成勇, 周鸣鸣. CRISPR /Cas9基因编辑技术在山羊和绵羊中的应用研究进展[J]. 生物技术通报, 2020, 36(3): 62-68. |
[10] | 杨雷, 叶洲杰, 李兆龙, 沈阳坤, 傅雅娟. 利用电转的方法对T细胞TET2基因敲除并探讨TET2对T细胞增殖的影响[J]. 生物技术通报, 2020, 36(1): 229-237. |
[11] | 鲍晶晶, 浦亚斌, 马月辉, 赵倩君. 绵羊不同发育阶段背最长肌组织中可变剪接的鉴定与分析[J]. 生物技术通报, 2019, 35(7): 33-38. |
[12] | 朱平, 杜力杰, 孟昆, 薛娟, 杨瑾, 李姗. 三型分泌系统效应蛋白调控细胞凋亡和焦亡的研究进展[J]. 生物技术通报, 2019, 35(4): 178-187. |
[13] | 胡建燃, 李平, 铁军, 金山. 紫丁香花精油的抗氧化和抗肿瘤活性研究[J]. 生物技术通报, 2019, 35(12): 16-23. |
[14] | 贾建磊, 陈倩, 靳继鹏, 袁赞, 张利平. 绵羊BMPR1B基因真核表达及产物互作蛋白的鉴定[J]. 生物技术通报, 2019, 35(12): 94-104. |
[15] | 陈子涵, 刘金娟. 六种食用菌体外抗氧化及抗细胞增殖活性研究[J]. 生物技术通报, 2019, 35(11): 104-108. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||