生物技术通报 ›› 2020, Vol. 36 ›› Issue (4): 185-191.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0595
邹坤, 路丽丽, Collins Asiamah Amponsah, 薛缘, 张少伟, 苏瑛, 赵志辉
收稿日期:
2019-06-25
出版日期:
2020-04-26
发布日期:
2020-04-30
作者简介:
邹坤,男,硕士研究生,研究方向:动物遗传育种与繁殖;E-mail:xxxczk105@163.com
基金资助:
ZOU Kun, LU Li-li, Collins Asiamah Amponsah, XUE Yuan, ZHANG Shao-wei, SU Ying, ZHAO Zhi-hui
Received:
2019-06-25
Published:
2020-04-26
Online:
2020-04-30
摘要: 家禽卵泡闭锁是一种受多种机制共同调控卵泡退化的过程,与家禽的繁殖性能密切相关。近年来,随着分子技术的快速发展,针对家禽卵泡细胞的凋亡和自噬引起卵泡闭锁的研究取得巨大进展。综述了家禽卵泡内细胞凋亡与自噬对家禽卵泡闭锁调控机制,讨论了卵泡细胞凋亡与自噬引起卵泡闭锁的意义及存在的问题。通过对家禽卵泡闭锁机制的研究,以期为家禽产蛋性能的充分利用和挖掘提供理论依据。
邹坤, 路丽丽, Collins Asiamah Amponsah, 薛缘, 张少伟, 苏瑛, 赵志辉. 家禽卵泡闭锁机制的研究进展[J]. 生物技术通报, 2020, 36(4): 185-191.
ZOU Kun, LU Li-li, Collins Asiamah Amponsah, XUE Yuan, ZHANG Shao-wei, SU Ying, ZHAO Zhi-hui. Research Progress on Mechanism of Poultry Follicular Atresia[J]. Biotechnology Bulletin, 2020, 36(4): 185-191.
[1] Gilbert AB, Evans AJ, Perry MM, et al.A method for separating the granulosa cells, the basal lamina and the theca of the preovulatory ovarian follicle of the domestic fowl(Gallus domesticus)[J]. J Reprod Fertil, 1977, 50(1):179-181. [2] Zhang J, Xu Y, Liu H, et al.MicroRNAs in ovarian follicular atresia and granulosa cell apoptosis[J]. Rep Bio and End, 2019, 17(1):9. [3] 李碧春, 秦洁. 雌禽生殖生理研究进展[J]. 中国畜牧兽医, 2006, 33(1):36-39. [4] 陈秀萍, 姜勋平, 丁家桐, 等. 鹅卵泡颗粒细胞凋亡及其与生殖激素间的关系[J]. 畜牧兽医学报, 2006, 37(10):982-986. [5] Jing Y, Lou Y, Ke H, et al.Goose broodiness is involved in granulosa cell autophagy and homeostatic imbalance of follicular hormones[J]. Poult Sci, 2016, 95(5):1156-1159. [6] Meng L, Jan SZ, Hamer G, et al.Preantral follicular atresia occurs mainly through autophagy, while antral follicles degenerate mostly through apoptosis[J]. Biol Reprod, 2018, 99(1):853-863. [7] 金艳梅. 鸡等级前卵泡颗粒细胞发育的激素和营养调控及机理研究[D]. 杭州:浙江大学, 2007. [8] Gupta SK, Gilbert AB, Walker MA.Histological study of follicular atresia in the ovary of the domestic hen(Gallus domesticus)[J]. Journal of Reproduction & Fertility, 1988, 82(1):219-225. [9] 黄正洋. 表皮生长因子参与鹅卵泡颗粒细胞增殖调控机理的研究[D]. 扬州:扬州大学, 2016. [10] Lin JX, Jia YD, Zhang CQ.Effect of epidermal growth factor on follicle-stimulating hormone-induced proliferation of granulosa cells from chicken prehierarchical follicles[J]. J Zhejiang Univ Sci B, 2011, 12(11):875-883. [11] Johnson AL, Woods DC.Dynamics of avian ovarian follicle development:Cellular mechanisms of granulosa cell differentiation[J]. Gen & Comp Endocrinol, 2009, 163(1):12-17. [12] 梁学超, 蒋明, 等. 猪卵巢发育的组织学变化及卵泡闭锁规律研究[J]. 畜牧兽医学报, 2017, 48(10):1863-1870. [13] 何宝祥, 郑喜邦, 等. 水牛有腔卵泡颗粒细胞凋亡的生物形态学特征[J]. 畜牧兽医学报, 2006, 37(11):1209-1216. [14] Choi JY, Jo MW, Lee EY, et al.Induction of apoptotic cell death via accumulation of autophagosomes in rat granulosa cells[J]. Fertility & Sterility, 2011, 95(4):1482-1486. [15] 郭燕君, 徐营, 刘胜兵, 等. LC3蛋白在小鼠卵泡颗粒细胞中的表达及定位研究[J]. 中国病理生理杂志, 2017, 33(9):1690-1695. [16] 罗茜, 陈伟, 郑春田, 等. 家禽卵泡颗粒细胞体外培养方法研究进展[J]. 动物营养学报, 2016, 28(9):2681-2686. [17] Chen F, Jiang X, Chen X, et al.Effects of downregulation of inhibin α gene expression on apoptosis and proliferation of goose granulosa cells[J]. J Genetics Genomics, 2007, 34(12):1106-1113. [18] 宋艳画, 宋善道, 张家骅. 原始卵泡形成和发育调节机制研究进展[J]. 动物医学进展, 2006, 27(3):30-33. [19] 应诗家, 于建宁, 施振旦. GDF9/BMP15对卵泡发育的调控[J]. 家畜生态学报, 2013, 34(9):8-12. [20] Yongje R.体外成熟牛卵母细胞BMP15和GDF9的表达及其对卵丘细胞凋亡的影响[D]. 北京:中国农业科学院, 2015. [21] 李悦, 计红, 薛琳琳, 等. 不同培养时间对鸡卵泡颗粒细胞孕酮、雌激素分泌水平及FSHR、LHR基因表达的影响[J]. 中国应用生理学杂志, 2017, 33(2):174-178. [22] Woods DC, Johnson AL.Regulation of follicle-stimulating hormone-receptor messenger RNA in hen granulosa cells relative to follicle selection[J]. Biology of Reproduction, 2005, 72(3):643-650. [23] Rangel PL, Gutierrez CG.Reproduction in hens:Is testosterone necessary for the ovulatory process?[J]. General & Comparative Endocrinology, 2014, 203(2):50-61. [24] Johnson AL.Ovarian follicle selection and granulosa cell differentiation[J]. Poultry Science, 2015, 94(4):781-789. [25] Wang J, Zhao C, Li J, et al.Transcriptome analysis of the potential roles of FOXL2 in chicken pre-hierarchical and pre-ovulatory granulosa cells[J]. Comparative Biochemistry & Physiology Part D, 2017, 21(5):56-66. [26] Nepomuceno AI, Muddiman DC, Petitte JN.Global proteomic analysis of functional compartments in immature avian follicles using laser microdissection coupled to LC-MS/MS[J]. Journal of Proteome Research, 2015, 14(9):3912-3923. [27] Akazome Y, Abe T, Mori T.Differentiation of chicken gonad as an endocrine organ:expression of LH receptor, FSH receptor, cytochrome P450c17 and aromatase genes[J]. Biol Reprod, 2002, 123(5):721-728. [28] 李晓雯, 郎朗, 季宇彬, 等. 卵泡刺激素促进卵巢颗粒细胞增殖分化的信号通路的研究进展[J]. 北京联合大学学报, 2012, 26(4):46-50. [29] Ghanem K, Johnson AL.Follicle dynamics and granulosa cell differentiation in the turkey hen ovary[J]. Poultry Science, 2018, 97(10):3755-3761. [30] Wen R, Hu S, Xiao Q, et al.Leptin exerts proliferative and anti-apoptotic effects on goose granulosa cells through the PI3K/Akt/mTOR signaling pathway[J]. J Steroid Bioch & Mol Bio, 2015, 149(70):9-15. [31] 魏泽辉, 贾存灵. 家禽卵泡选择过程中颗粒细胞的分子调控机制[J]. 中国家禽, 2017, 39(21):1-5. [32] Du X, Pan Z, Li Q, et al.Smad4 feedback regulates the canonical TGF-β signaling pathway to control granulosa cell apoptosis[J]. Cell Death & Dis, 2018, 9(2):151-158. [33] Ramasamy M, Sreesujatha. Regulation of ovarian follicular atresia through apoptotic process in Japanese Quail(Coturnix coturnix japonica)[J]. Internation Journal of Advacne Research in Biological Sciences, 2014, 9(1):326-330. [34] Johnson AL.The avian ovary and follicle development:Some comparative and practical insights[J]. Turkish Journal of Veterinary & Animal Sciences, 2014, 38(6):660-669. [35] Wang Y, Chen Q, Liu Z, et al.Transcriptome analysis on single small yellow follicles reveals that wnt4 is involved in chicken follicle selection[J]. Front End, 2017, 8(3):17-21. [36] 林金杏. 局部性促生长因子对鸡卵泡发育的调控及其机理的研究[D]. 杭州:浙江大学, 2011. [37] Gan X, Chen D, Deng Y, et al. Establishment of anin vitroculture model of theca cells from hierarchical follicles in ducks[J]. Bioscience Reports, 2017, 37(3):BSR20160491. [38] Lee KA, Bahr JM.Utilization of substrates for testosterone and estradiol-17 beta production by small follicles of the chicken ovary[J]. Domest Anim Endocrinol, 1994, 11(3):307-314. [39] Kim D, Ocón-Grove O, Johnson AL.Bone morphogenetic protein 4 supports the initial differentiation of hen(Gallus gallus)granulosa cells[J]. Biology of Reproduction, 2013, 88(6):161. [40] Nitta H, Osawa Y, Bahr JM.Two populations of steroidogenic cells in the theca layer of chicken ovarian follicles[M]. Serono Symposia USA, 1991. [41] Vitt UA, Mcgee EA, Hayashi M, et al.In vivo treatment with GDF-9 stimulates primordial and primary follicle progression and theca cell marker CYP17 in ovaries of immature rats[J]. Endocrinology, 2000, 141(10):3814-3820. [42] Rangel PL, Rodríguez A, Gutierrez CG.Testosterone directly induces progesterone production and interacts with physiological concentrations of LH to increase granulosa cell progesterone production in laying hens(Gallus domesticus)[J]. Animal Reproduction Science, 2007, 102(1):56-65. [43] Hattori K, Orisaka M, Fukuda S, et al.Luteinizing hormone facilitates antral follicular maturation and survival via thecal paracrine signaling in cattle[J]. Endocrinology, 2018, 159(6):2337-2347. [44] Lin X, Liu X, Ma Y, et al.Coherent apoptotic and autophagic activities involved in regression of chicken postovulatory follicles[J]. Aging, 2018, 10(4):819-832. [45] Choi J, Jo M, et al.AKT is involved in granulosa cell autophagy regulation via mTOR signaling during rat follicular development and atresia[J]. Reproduction, 2014, 147(1):73-80. [46] Zhou J, Yao W, Li C, et al.Administration of follicle-stimulating hormone induces autophagy via upregulation of HIF-1α in mouse granulosa cells[J]. Cell Death & Disease, 2017, 8(8):e3001. [47] Kim C, Park JM, Song Y, et al.HIF1α-mediated AIMP3 suppression delays stem cell aging via the induction of autophagy[J]. Aging cell, 2019(1):e12909. [48] Siddiqui FA, Prakasam G, Chattopadhyay S, et al.Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition[J]. Scientific Reports, 2018, 8(1):8323. [49] Gao H, Lin L, Haq IU, et al.Inhibition of NF-κB promotes autophagy via JNK signaling pathway in porcine granulosa cells[J]. Biochemical & Biophysical Research Communications, 2016, 473(1):311-316. [50] 覃芳, 张智博. JNK信号通路与自噬的研究进展[J]. 中南大学学报:医学版, 2015, 40(9):1035-1038. [51] Du L, Gu T, et al.Transcriptome profiling to identify key mediators of granulosa cell proliferation upon FSH stimulation in the goose(Anser cygnoides)[J]. British Poult Sci, 2018, 59(4):416-421. [52] Yu J, Lou Y, He K, et al.Goose broodiness is involved in granulosa cell autophagy and homeostatic imbalance of follicular hormones[J]. Poult Sci, 2016, 95(5):1156-1162. [53] Lou Y, Yu W, Han L, et al.ROS activates autophagy in follicular granulosa cells via mtor pathway to regulate broodiness in goose[J]. Ani Rep Sci 2017, 185(1):37-103. [54] Ming S, Yan C, Yi J, et al.Melatonin protects mouse granulosa cells against oxidative damage by inhibiting FOXO1-mediated autophagy:Implication of an antioxidation-independent mechanism[J]. Redox Bio, 2018, 18(1):38-57. [55] Cao Y, Shen M, Jiang Y, et al.Melatonin reduces oxidative damage in mouse granulosa cells via restraining JNK-dependent autophagy[J]. Reproduction, 2018, 155(3):307-319. [56] Kang B, Wang XX, Xu QL, et al. Effect of 3-NPA inducing oxidative stress and apoptosis of granulosa cells in geese[J]. Biosci Rep, 2018, 38(5). pii:BSR20180274. [57] Yamamoto Y, Kuwahara A, et al.Tumor necrosis factor alpha inhibits ovulation and induces granulosa cell death in rat ovaries[J]. Reprod Med Biol, 2015, 14(3):107-115. [58] 曹伟. 鹅Dicer基因克隆及其在卵泡中的发育性表达研究[D]. 雅安:四川农业大学, 2012. [59] Shen M, Li T, et al.Dynamic expression and functional analysis of circRNA in granulosa cells during follicular development in chicken[J]. BMC Genomics, 2019, 20(1):96-102. [60] Worku T, Rehman Z, Talpur H, et al.MicroRNAs:new insight in modulating follicular atresia:a review[J]. International Journal of Molecular Sciences, 2017, 18(2):E333. |
[1] | 马钰静, 段春辉, 贺名扬, 张英杰, 杨若晨, 王泳, 刘月琴. 敲除G0S2基因对绵羊卵巢颗粒细胞增殖、类固醇激素及相关基因表达的影响[J]. 生物技术通报, 2023, 39(6): 325-334. |
[2] | 杨小峰, 秦小伟, 郭泽媛, 吕丽华. 原花青素对体外培养绵羊卵泡颗粒细胞增殖的影响[J]. 生物技术通报, 2022, 38(9): 258-263. |
[3] | 位欣欣, 兰海燕. 植物MYB转录因子调控次生代谢及逆境响应的研究进展[J]. 生物技术通报, 2022, 38(8): 12-23. |
[4] | 张婵, 吴友根, 于靖, 杨东梅, 姚广龙, 杨华庚, 张军锋, 陈萍. 光与茉莉酸信号介导的萜类化合物合成分子机制[J]. 生物技术通报, 2022, 38(8): 32-40. |
[5] | 孙曼銮, 葛赛, 卜佳, 朱壮彦. 大肠杆菌核糖核酸酶调控机制研究[J]. 生物技术通报, 2022, 38(3): 234-245. |
[6] | 汤晓丽, 姜福东, 张洪霞. 植物SINA E3泛素连接酶功能的研究进展[J]. 生物技术通报, 2022, 38(10): 10-17. |
[7] | 张凤, 陈伟. 代谢组学在植物逆境生物学中的研究进展[J]. 生物技术通报, 2021, 37(8): 1-11. |
[8] | 张婵, 姚广龙, 张军锋, 于靖, 杨东梅, 陈萍, 吴友根. 广藿香百秋李醇分子调控及合成生物学研究进展[J]. 生物技术通报, 2021, 37(8): 55-64. |
[9] | 钱虹萍, 陈博, 林金星, 崔亚宁. RNA聚合酶II动态调控及其成像技术的研究进展[J]. 生物技术通报, 2021, 37(4): 293-302. |
[10] | 尹晓梦, 曹雪玮, 王富军, 赵健, 张惠展. 雷公藤红素与凋亡蛋白突变体通过强化Nur77诱发凋亡通路发挥协同抗肿瘤作用[J]. 生物技术通报, 2020, 36(7): 119-129. |
[11] | 李泽卿, 刘彩贤, 邢文, 文亚峰. miRNA在植物响应高温胁迫中的研究进展[J]. 生物技术通报, 2020, 36(2): 149-157. |
[12] | 郑文清, 张倩, 杜亮. 短串联靶标模拟技术及其在植物miRNA功能研究中的应用[J]. 生物技术通报, 2020, 36(12): 256-264. |
[13] | 位明明, 曾霞, 安泽伟, 胡彦师, 黄肖, 李维国. C类花器官特征基因AGAMOUS(AG)调控植物花分生组织维持与终止研究进展[J]. 生物技术通报, 2020, 36(1): 135-143. |
[14] | 常永芳, 包鹏甲, 褚敏, 吴晓云, 梁春年, 阎萍. LncRNA在哺乳动物毛囊发育调控中的研究进展[J]. 生物技术通报, 2019, 35(8): 205-212. |
[15] | 朱平, 杜力杰, 孟昆, 薛娟, 杨瑾, 李姗. 三型分泌系统效应蛋白调控细胞凋亡和焦亡的研究进展[J]. 生物技术通报, 2019, 35(4): 178-187. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 777
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 533
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||