生物技术通报 ›› 2024, Vol. 40 ›› Issue (2): 266-276.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0837
雷美玲1,2(), 饶文华2, 胡进锋2, 岳琪1,2, 吴祖建1, 范国成2()
收稿日期:
2023-08-28
出版日期:
2024-02-26
发布日期:
2024-03-13
通讯作者:
范国成,男,博士,研究员,研究方向:植物病理及分子生物学; E-mail: guochengfan@126.com作者简介:
雷美玲,女,硕士研究生,研究方向:植物病毒学; E-mail: leimeilingfj@126.com
基金资助:
LEI Mei-ling1,2(), RAO Wen-hua2, HU Jin-feng2, YUE Qi1,2, WU Zu-jian1, FAN Guo-cheng2()
Received:
2023-08-28
Published:
2024-02-26
Online:
2024-03-13
摘要:
【目的】本研究旨在研究福建南平地区芦柑(Citrus reticulata)植株根际土壤细菌群落,并分析黄龙病对其细菌群落的影响,为南平地区芦柑黄龙病的防控提供科学依据。【方法】采用五点法采集了健康和黄龙病发病的芦柑植株根际土壤样本,通过扩增子测序技术和生物信息学方法,深入研究了黄龙病发病芦柑根际土壤细菌群落的多样性和组成变化,分析了土壤理化因子与细菌群落的关联性。【结果】研究结果表明,黄龙病发病的芦柑植株根际土壤细菌群落的多样性略高于健康植株。黄龙病发病芦柑根际土壤中的变形菌门相对丰度明显升高,而放线菌门相对丰度显著降低。在属水平上,与健康植株相比,黄龙病发病芦柑植株根际土壤细菌群落中蔷薇属和嗜酸性杆菌属的相对丰度显著增加,与速效钾、有效磷以及有机质呈现显著负相关,而与pH值呈现显著正相关。相反地,康奈斯氏杆菌属和褚氏杆菌属的相对丰度明显低于健康植株,并与速效钾、有效磷以及有机质呈现显著正相关,同时与pH值呈现显著负相关。【结论】黄龙病菌感染改变了柑橘土壤理化特性,并显著减少根际土壤中有益细菌的相对丰度,从而导致了芦柑植株根际细菌群落的多样性和组成出现显著变化。与此同时,黄龙病发病的芦柑植株可能通过招募固氮和促进植物根际生长的有益细菌来对抗病原菌的侵害。
雷美玲, 饶文华, 胡进锋, 岳琪, 吴祖建, 范国成. 黄龙病发病芦柑根际土壤细菌群落组成与多样性特征[J]. 生物技术通报, 2024, 40(2): 266-276.
LEI Mei-ling, RAO Wen-hua, HU Jin-feng, YUE Qi, WU Zu-jian, FAN Guo-cheng. Bacterial Diversity and Structure in Rhizosphere Soil of Citrus Infested with Huanglongbing[J]. Biotechnology Bulletin, 2024, 40(2): 266-276.
分组Group | 发病组HLB group | 健康组Healthy group | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |||
黄龙病菌滴度值CLas Ct | 26.62±0.20 | 23.03±0.20 | 20.56±0.05 | 22.56±0.25 | None | None | None | None |
表1 柑橘黄龙病病原菌qPCR检测结果
Table 1 qPCR detection of citrus HLB pathogen
分组Group | 发病组HLB group | 健康组Healthy group | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |||
黄龙病菌滴度值CLas Ct | 26.62±0.20 | 23.03±0.20 | 20.56±0.05 | 22.56±0.25 | None | None | None | None |
图1 田间芦柑植株和叶片 A:黄龙病发病芦柑植株;B:健康芦柑植株;C:黄龙病发病芦柑植株叶片;D:健康芦柑植株叶片
Fig. 1 Plant and leaf of C. reticulata in field A: Citrus reticulata with Huanglongbing(HLB). B: Healthy C. reticulata.C: Huanglongbing leaf of C. reticulata with HLB. D: Healthy C. reticulata leaf
图2 健康组与发病组在OTU水平的Alpha多样性指数分析 Healthy:健康芦柑根际土壤样品组;HLB:黄龙病发病芦柑根际土壤样品组。下同
Fig. 2 Alpha diversity index of healthy group and HLB group at the OTU level Healthy: Rhizosphere soil sample group of healthy C. reticulata; HLB: rhizosphere soil sample group of C. reticulata with HLB. The same below
属Genus | 相对丰度的差异Abundance difference | 健康组的相对丰度Healthy group abundance | 发病组的相对丰度HLB group abundance |
---|---|---|---|
芽孢杆菌属Bacillus | -0.476 | 2.264 | 1.788 |
假单胞菌属 Pseudomonas | -0.123 | 0.150 | 0.027 |
慢生根瘤菌属Bradyrhizobium | -0.126 | 1.458 | 1.332 |
伯克霍尔德菌属Bur- kholderia-Caballero- nia-Paraburkholderi | -0.174 | 0.557 | 0.383 |
鞘氨醇单胞菌属Sphingomonas | -0.207 | 0.298 | 0.091 |
中根瘤菌属 Mesorhizobium | -0.004 | 0.017 | 0.013 |
铜菌属Cupriavidus | 0.002 | 4.386×10-3 | 6.280×10-3 |
细胞弧菌属Cellvibrio | 0.002 | 1.595×10-3 | 3.589×10-3 |
变异菌属Variovorax | 0.047 | 0.027 | 0.074 |
表2 健康组与发病组柑橘根际部分细菌群在属水平上的相对丰度比较
Table 2 Comparative study on the relative abundance of rhizosphere part of the bacteria between healthy group and HLB group at the genus level
属Genus | 相对丰度的差异Abundance difference | 健康组的相对丰度Healthy group abundance | 发病组的相对丰度HLB group abundance |
---|---|---|---|
芽孢杆菌属Bacillus | -0.476 | 2.264 | 1.788 |
假单胞菌属 Pseudomonas | -0.123 | 0.150 | 0.027 |
慢生根瘤菌属Bradyrhizobium | -0.126 | 1.458 | 1.332 |
伯克霍尔德菌属Bur- kholderia-Caballero- nia-Paraburkholderi | -0.174 | 0.557 | 0.383 |
鞘氨醇单胞菌属Sphingomonas | -0.207 | 0.298 | 0.091 |
中根瘤菌属 Mesorhizobium | -0.004 | 0.017 | 0.013 |
铜菌属Cupriavidus | 0.002 | 4.386×10-3 | 6.280×10-3 |
细胞弧菌属Cellvibrio | 0.002 | 1.595×10-3 | 3.589×10-3 |
变异菌属Variovorax | 0.047 | 0.027 | 0.074 |
图6 健康组与发病组细菌群落在门(A)、属(B)水平相对丰度显著差异分析 X轴表示发病组和健康组,Y轴表示发病组和健康组中物种的平均相对丰度。*:P<0.05,**:P<0.01,***:P<0.001,下同
Fig. 6 Significant difference in relative abundance of bacteria at the phylum(A)and genus(B)level between healthy and HLB groups X axis represents HLB group and healthy group, and Y axis represents the average relative abundance of a species in HLB group and healthy group. *: P < 0.05, **: P < 0.01, ***: P < 0.001. The same below
图7 属水平健康与黄龙病发病芦柑植株根际土壤细菌群落和环境因子之间的相关性 X轴和Y轴分别为环境因子和物种,通过计算获得相关性R值和P值。R值在图中以不同颜色展示,右侧图例是不同R值的颜色区间
Fig. 7 Correlation between bacterial community and environmental factors in the rhizosphere soil of healthy and HLB-infected citrus plants at the genus level The X-axis and Y-axis are environmental factors and species, respectively. The R values are shown in different colors, and the right legend is a color range of different R values
[1] | 范国成, 刘波, 吴如健, 等. 中国柑橘黄龙病研究30年[J]. 福建农业学报, 2009, 24(2): 183-190. |
Fan GC, Liu B, Wu RJ, et al. Thirty years of research on citrus Huanglongbing in China[J]. Fujian J Agric Sci, 2009, 24(2): 183-190. | |
[2] |
Ma WX, Pang ZQ, Huang XE, et al. Citrus Huanglongbing is a pathogen-triggered immune disease that can be mitigated with antioxidants and gibberellin[J]. Nat Commun, 2022, 13(1): 529.
doi: 10.1038/s41467-022-28189-9 |
[3] |
Gottwald TR. Current epidemiological understanding of citrus huanglongbing[J]. Annu Rev Phytopathol, 2010, 48: 119-139.
doi: 10.1146/annurev-phyto-073009-114418 pmid: 20415578 |
[4] |
Wang N, Trivedi P. Citrus huanglongbing: a newly relevant disease presents unprecedented challenges[J]. Phytopathology, 2013, 103(7): 652-665.
doi: 10.1094/PHYTO-12-12-0331-RVW URL |
[5] |
Yang CY, Powell CA, Duan YP, et al. Antimicrobial nanoemulsion formulation with improved penetration of foliar spray through Citrus leaf cuticles to control Citrus Huanglongbing[J]. PLoS One, 2015, 10(7): e0133826.
doi: 10.1371/journal.pone.0133826 URL |
[6] |
Li B, Wang SC, Zhang Y, et al. Acid soil improvement enhances disease tolerance in Citrus infected by Candidatus Liberibacter asiaticus[J]. Int J Mol Sci, 2020, 21(10): 3614.
doi: 10.3390/ijms21103614 URL |
[7] |
Zhou YJ, Tang YN, Hu CX, et al. Soil applied Ca, Mg and B altered phyllosphere and rhizosphere bacterial microbiome and reduced Huanglongbing incidence in Gannan Navel Orange[J]. Sci Total Environ, 2021, 791: 148046.
doi: 10.1016/j.scitotenv.2021.148046 URL |
[8] | 邱志燏, 黄红兰, 舒畅, 等. 柑橘黄龙病发病机理、症状及防控措施[J]. 生物灾害科学, 2015, 38(3): 193-200. |
Qiu ZY, Huang HL, Shu C, et al. Citrus yellow dragon disease pathogenesis, symptoms and prevention measures[J]. Biol Disaster Sci, 2015, 38(3): 193-200. | |
[9] |
Etxeberria E, Gonzalez P, Achor D, et al. Anatomical distribution of abnormally high levels of starch in HLB-affected Valencia orange trees[J]. Physiol Mol Plant Pathol, 2009, 74(1): 76-83.
doi: 10.1016/j.pmpp.2009.09.004 URL |
[10] |
Johnson EG, Wu J, Bright DB, et al. Association of ‘Candidatus Liberibacter asiaticus’ root infection, but not phloem plugging with root loss on huanglongbing-affected trees prior to appearance of foliar symptoms[J]. Plant Pathol, 2014, 63(2): 290-298.
doi: 10.1111/ppa.2014.63.issue-2 URL |
[11] |
Berendsen RL, Vismans G, Yu K, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium[J]. ISME J, 2018, 12(6): 1496-1507.
doi: 10.1038/s41396-018-0093-1 pmid: 29520025 |
[12] |
Bulgarelli D, Schlaeppi K, Spaepen S, et al. Structure and functions of the bacterial microbiota of plants[J]. Annu Rev Plant Biol, 2013, 64: 807-838.
doi: 10.1146/annurev-arplant-050312-120106 pmid: 23373698 |
[13] |
Lazcano C, Boyd E, Holmes G, et al. The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions[J]. Sci Rep, 2021, 11(1): 3188.
doi: 10.1038/s41598-021-82768-2 pmid: 33542451 |
[14] |
Srivastava AK, Das AK, Jagannadham PTK, et al. Bioprospecting microbiome for soil and plant health management amidst Huanglongbing threat in Citrus: a review[J]. Front Plant Sci, 2022, 13: 858842.
doi: 10.3389/fpls.2022.858842 URL |
[15] | Blaustein RA, Lorca GL, Meyer JL, et al. Defining the core Citrus leaf- and root-associated microbiota: factors associated with community structure and implications for managing Huanglongbing(Citrus greening)disease[J]. Appl Environ Microbiol, 2017, 83(11): e00210-e00217. |
[16] | 高金会, 张国良, 付卫东, 等. 基于宏基因组测序解析长刺蒺藜草入侵对根际土壤氮循环的影响[J]. 植物保护学报, 2022, 49(5): 1349-1357. |
Gao JH, Zhang GL, Fu WD, et al. Effects of spiny burr grass Cenchrus longispinus invasion on rhizosphere nitrogen cycle based on metagenome sequencing[J]. J Plant Prot, 2022, 49(5): 1349-1357. | |
[17] |
Trivedi P, Duan YP, Wang N. Huanglongbing, a systemic disease, restructures the bacterial community associated with citrus roots[J]. Appl Environ Microbiol, 2010, 76(11): 3427-3436.
doi: 10.1128/AEM.02901-09 URL |
[18] |
Trivedi P, He ZL, Van Nostrand JD, et al. Huanglongbing alters the structure and functional diversity of microbial communities associated with citrus rhizosphere[J]. ISME J, 2012, 6(2): 363-383.
doi: 10.1038/ismej.2011.100 pmid: 21796220 |
[19] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
Lu RK. Methods of soil agrochemical analysis[M]. China Agriculture Scientech Press, 2000. | |
[20] |
Reinhold-Hurek B, Bünger W, Burbano CS, et al. Roots shaping their microbiome: global hotspots for microbial activity[J]. Annu Rev Phytopathol, 2015, 53: 403-424.
doi: 10.1146/annurev-phyto-082712-102342 pmid: 26243728 |
[21] | 秦泰春, 黄小兰, 简正军, 等. 赣南脐橙黄龙病植株根际土壤微生物多样性研究[J]. 西南农业学报, 2023, 36(2): 329-339. |
Qin TC, Huang XL, Jian ZJ, et al. Microbial diversity in rhizosphere soil of navel orange infected with citrus Huanglongbing in southern Jiangxi Province[J]. Southwest China J Agric Sci, 2023, 36(2): 329-339. | |
[22] |
Yang CH, Crowley DE, Menge JA. 16S rDNA fingerprinting of rhizosphere bacterial communities associated with healthy and Phytophthora infected avocado roots[J]. FEMS Microbiol Ecol, 2001, 35(2): 129-136.
pmid: 11295451 |
[23] |
Reiter B, Pfeifer U, Schwab H, et al. Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica[J]. Appl Environ Microbiol, 2002, 68(5): 2261-2268.
doi: 10.1128/AEM.68.5.2261-2268.2002 URL |
[24] |
Coombs JT, Franco CMM. Isolation and identification of Actinobacteria from surface-sterilized wheat roots[J]. Appl Environ Microbiol, 2003, 69(9): 5603-5608.
doi: 10.1128/AEM.69.9.5603-5608.2003 URL |
[25] |
Remans R, Ramaekers L, Schelkens S, et al. Effect of Rhizobium-Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba[J]. Plant Soil, 2008, 312(1): 25-37.
doi: 10.1007/s11104-008-9606-4 URL |
[26] |
Igiehon NO, Babalola OO. Rhizosphere microbiome modulators: contributions of nitrogen fixing bacteria towards sustainable agriculture[J]. Int J Environ Res Public Health, 2018, 15(4): 574.
doi: 10.3390/ijerph15040574 URL |
[27] | Olivera S, Dusica D, Dragana J, et al. Improvement of common bean growth by co-inoculation with Rhizobium and plant growth-promoting bacteria[J]. Romanian Biotechnological Letters, 2011, 16(1): 5919-5926. |
[28] |
Riera N, Handique U, Zhang YZ, et al. Characterization of antimicrobial-producing beneficial bacteria isolated from Huanglongbing escape Citrus trees[J]. Front Microbiol, 2017, 8: 2415.
doi: 10.3389/fmicb.2017.02415 URL |
[29] |
Zhang YZ, Xu J, Riera N, et al. Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome[J]. Microbiome, 2017, 5(1): 97.
doi: 10.1186/s40168-017-0304-4 pmid: 28797279 |
[30] |
Xu J, Zhang YZ, Zhang PF, et al. The structure and function of the global citrus rhizosphere microbiome[J]. Nat Commun, 2018, 9(1): 4894.
doi: 10.1038/s41467-018-07343-2 pmid: 30459421 |
[31] |
陈杰, 郭天文, 谭雪莲, 等. 马铃薯连作地健康株与病株根区土壤微生态特性比较[J]. 作物学报, 2013, 39(11): 2055-2064.
doi: 10.3724/SP.J.1006.2013.02055 |
Chen J, Guo TW, Tan XL, et al. Comparison of microecological characterization in rhizosphere soil between healthy and diseased plants in continuous cropping potato fields[J]. Acta Agron Sin, 2013, 39(11): 2055-2064.
doi: 10.3724/SP.J.1006.2013.02055 URL |
|
[32] | 段春梅, 薛泉宏, 呼世斌, 等. 连作黄瓜枯萎病株、健株根域土壤微生物生态研究[J]. 西北农林科技大学学报: 自然科学版, 2010, 38(4): 143-150. |
Duan CM, Xue QH, Hu SB, et al. Microbial ecology of Fusarium wilt infected and healthy cucumber plant in root zone of continuous cropping soil[J]. J Northwest A F Univ Nat Sci Ed, 2010, 38(4): 143-150. | |
[33] |
Chen XF, Wang JC, You YM, et al. When nanoparticle and microbes meet: the effect of multi-walled carbon nanotubes on microbial community and nutrient cycling in hyperaccumulator system[J]. J Hazard Mater, 2022, 423: 126947.
doi: 10.1016/j.jhazmat.2021.126947 URL |
[34] |
Wu SC, Chang BS, Li YY. Effect of the coexistence of endosulfan on the lindane biodegradation by Novosphingobium barchaimii and microbial enrichment cultures[J]. Chemosphere, 2022, 297: 134063.
doi: 10.1016/j.chemosphere.2022.134063 URL |
[35] | DeAngelis KM, Pold G. Genome sequences of Frankineae sp. strain MT45 and Jatrophihabitans sp. strain GAS493, two Actinobacteria isolated from forest soil[J]. Microbiol Resour Announc, 2020, 9(38): e00614-e00620. |
[36] |
Spieck E, Sass K, Keuter S, et al. Defining culture conditions for the hidden nitrite-oxidizing bacterium Nitrolancea[J]. Front Microbiol, 2020, 11: 1522.
doi: 10.3389/fmicb.2020.01522 pmid: 32849321 |
[37] |
Ramírez-Bahena MH, Tejedor C, Martín I, et al. Endobacter medicaginis gen. nov., sp. nov., isolated from alfalfa nodules in an acidic soil[J]. Int J Syst Evol Microbiol, 2013, 63(Pt_5): 1760-1765.
doi: 10.1099/ijs.0.041368-0 URL |
[38] |
Saravanan VS, Madhaiyan M, Osborne J, et al. Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion[J]. Microb Ecol, 2008, 55(1): 130-140.
pmid: 17574542 |
[39] |
Reis VM, Teixeira KR. Nitrogen fixing bacteria in the family Acetobacteraceae and their role in agriculture[J]. J Basic Microbiol, 2015, 55(8): 931-949.
doi: 10.1002/jobm.v55.8 URL |
[40] |
de Oliveira Costa PH, et al.do Nascimento SV, Herrera H, Non-specific interactions of rhizospheric microbial communities support the establishment of Mimosa acutistipula var. ferrea in an Amazon rehabilitating mineland[J]. Processes, 2021, 9(11): 2079.
doi: 10.3390/pr9112079 URL |
[41] | Bai JF, Zhang SJ, Gu WH, et al. Bioleaching of heavy metals from a contaminated soil using bacteria from wastewater sludge[M]//Sustainable and Circular Management of Resources and Waste Towards a Green Deal. Amsterdam: Elsevier, 2023: 183-198. |
[42] | Johnson DB. Encyclopedia of Microbiology[M]. 3rd ed. New York: Academic Press, 2009, 107-126. |
[43] |
Coupland K, Johnson DB. Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria[J]. FEMS Microbiol Lett, 2008, 279(1): 30-35.
pmid: 18081844 |
[44] |
Malki M, De Lacey AL, Rodríguez N, et al. Preferential use of an anode as an electron acceptor by an acidophilic bacterium in the presence of oxygen[J]. Appl Environ Microbiol, 2008, 74(14): 4472-4476.
doi: 10.1128/AEM.00209-08 URL |
[45] | Li LZ, Liu ZH, Zhang M, et al. Insights into the metabolism and evolution of the genus Acidiphilium, a typical acidophile in acid mine drainage[J]. mSystems, 2020, 5(6): e00867-e00820. |
[46] | Ge L, Wang X, Hou JW, et al. Study on degradation characteristics of imazamox by Streptomycetaceae[J]. J Environ Sci Heath B, 2022, 57(6): 470-478. |
[1] | 李雪, 李容欧, 孔美懿, 黄磊. 解淀粉芽孢杆菌SQ-2对水稻的促生作用[J]. 生物技术通报, 2024, 40(2): 109-119. |
[2] | 冯路遥, 赵江源, 施竹凤, 莫艳芳, 杨童雨, 申云鑫, 何飞飞, 李铭刚, 杨佩文. 森林根际土壤细菌的分离、鉴定及生物活性筛选[J]. 生物技术通报, 2024, 40(1): 294-307. |
[3] | 谢田朋, 张佳宁, 董永骏, 张建, 景明. 早期抽薹对当归根际土壤微环境的影响[J]. 生物技术通报, 2023, 39(7): 206-218. |
[4] | 申云鑫, 施竹凤, 周旭东, 李铭刚, 张庆, 冯路遥, 陈齐斌, 杨佩文. 三株具生防功能芽孢杆菌的分离鉴定及其生物活性研究[J]. 生物技术通报, 2023, 39(3): 267-277. |
[5] | 孙海航, 官会林, 王旭, 王童, 李泓霖, 彭文洁, 刘柏桢, 樊芳玲. 生物炭对三七连作土壤性质及真菌群落的影响[J]. 生物技术通报, 2023, 39(2): 221-231. |
[6] | 李颖, 龙长梅, 蒋标, 韩丽珍. 两株PGPR菌株的花生定殖及对根际细菌群落结构的影响[J]. 生物技术通报, 2022, 38(9): 237-247. |
[7] | 王子夜, 王志刚, 阎爱华. 不同树龄桑根际土壤原生生物群落组成多样性[J]. 生物技术通报, 2022, 38(8): 206-215. |
[8] | 陈天赐, 武少兰, 杨国辉, 江丹霞, 江玉姬, 陈炳智. 无柄灵芝醇提物对小鼠睡眠及肠道菌群的影响[J]. 生物技术通报, 2022, 38(8): 225-232. |
[9] | 钟辉, 刘亚军, 王滨花, 和梦洁, 吴兰. 分析方法对细菌群落16S rRNA基因扩增测序分析结果的影响[J]. 生物技术通报, 2022, 38(6): 81-92. |
[10] | 谢田朋, 柳娜, 刘越敏, 曲馨, 薄双琴, 景明. 化肥减量配施中药源植物生长调节剂对当归质量和根际土壤细菌群落的影响[J]. 生物技术通报, 2022, 38(3): 79-91. |
[11] | 赵林艳, 官会林, 向萍, 李泽诚, 柏雨龙, 宋洪川, 孙世中, 徐武美. 白及根腐病植株根际土壤微生物群落组成特征分析[J]. 生物技术通报, 2022, 38(2): 67-74. |
[12] | 陈宇捷, 郑华宝, 周昕彦. 改良高通量测序技术揭示除藻剂对藻类群落的影响[J]. 生物技术通报, 2022, 38(11): 70-79. |
[13] | 曹修凯, 王珊, 葛玲, 张卫博, 孙伟. 染色体外环形DNA研究进展及其在畜禽育种中的应用[J]. 生物技术通报, 2022, 38(1): 247-257. |
[14] | 毛婷, 牛永艳, 郑群, 杨涛, 穆永松, 祝英, 季彬, 王治业. 菌剂对苜蓿青贮发酵品质及微生物群落的影响[J]. 生物技术通报, 2021, 37(9): 86-94. |
[15] | 刘传和, 贺涵, 何秀古, 刘开, 邵雪花, 赖多, 匡石滋, 肖维强. 不同连作年限菠萝园土壤差异代谢物和细菌群落结构分析[J]. 生物技术通报, 2021, 37(8): 162-175. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||