生物技术通报 ›› 2024, Vol. 40 ›› Issue (3): 261-272.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0895
收稿日期:
2023-09-18
出版日期:
2024-03-26
发布日期:
2024-04-08
通讯作者:
郝大程作者简介:
郝大程,男,教授,研究方向:生物修复;E-mail: hao@djtu.edu.cn
基金资助:
HAO Da-cheng1(), ZHENG Yu-wei1, WANG Fan1, HAN Lei1, ZHANG Ze2
Received:
2023-09-18
Published:
2024-03-26
Online:
2024-04-08
摘要:
【目的】 微生物燃料电池(microbial fuel cell, MFC)在去除污染物的同时产出电能,是一种颇有前景的生态修复手段。构建真菌强化MFC装置,比较电动力(EK)、真菌、MFC修复除草剂污染土壤效果及优缺点,探索MFC在有机污染物修复中的应用潜力。【方法】 设计了一种添加真菌进行生物强化的MFC,并用EK、真菌、MFC三种方法修复两种除草剂污染的灭菌土壤。经筛选和驯化的疣孢漆斑菌和踝节菌菌株用于后两种方法,研究真菌强化对MFC去除除草剂的影响。测量土壤pH、电导率、除草剂去除率,MFC产电性能,用气相色谱-质谱鉴定两种除草剂的降解产物。【结果】 EK修复中,添加模拟电解液、碳纤维条、加电10 V的处理组7 d后氯氟吡啶酯(F)和高效氟吡甲禾灵(H)去除率分别为71%和38%。真菌、MFC处理F的最大去除率达到100%。对比踝节菌,疣孢漆斑菌对两种除草剂的降解性能更好,疣孢漆斑菌、踝节菌单菌构建的MFC对H的去除率分别为62.5%和24.1%。F降解产物为氟氯吡啶酸,H降解产物为乙酸大茴香酯,推测了降解路径和降解动力学。三种方法降解F以及EK降解H均符合动力学一级反应,而真菌和MFC降解H符合二级反应。【结论】 对比EK、真菌修复,MFC修复效果更好,该方法可以较快地修复土壤又无需额外供电,是一种经济有效的自持式修复策略。
郝大程, 郑宇薇, 王凡, 韩蕾, 张赜. 真菌电化学修复除草剂污染土壤:降解动力学探索[J]. 生物技术通报, 2024, 40(3): 261-272.
HAO Da-cheng, ZHENG Yu-wei, WANG Fan, HAN Lei, ZHANG Ze. Fungal Electrochemical Remediation of Herbicide-contaminated Soil: Preliminary Study on Degradation Kinetics[J]. Biotechnology Bulletin, 2024, 40(3): 261-272.
图1 除草剂化学结构 A:氯氟吡啶酯化学结构式,C20H14Cl2F2N2O3;B:高效氟吡甲禾灵结构式,C15H11ClF3NO4
Fig. 1 Chemical structures of herbicides A: Florpyrauxifen-benzyl, C20H14Cl2F2N2O3; B: haloxyfop-P, C15H11ClF3NO4
分组Group | 土壤中污染物含量 Pollutant content in soil | 菌液Composition |
---|---|---|
(1)F | 97.14 mg/kg F | 不添加菌液No fungal addition |
(2)F+T | 97.14 mg/kg F | 20 mL F+ 20 mL T |
(3)F+M | 97.14 mg/kg F | 20 mL F+20 mL M |
(4)F+T+M | 97.14 mg/kg F | 20 mL F+ 10 mL T + 10 mL M |
(5)H | 245.71 mg/kg H | 不添加菌液No fungal addition |
(6)H+T | 245.71 mg/kg H | 20 mL H+ 20 mL T |
(7)H+M | 245.71 mg/kg H | 20 mL H+ 20 mL M |
(8)H+T+M | 245.71 mg/kg H | 20 mL H+ 10 mL T + 10 mL M |
表1 真菌与MFC降解方案设计
Table 1 Degradation scheme of fungi and MFC
分组Group | 土壤中污染物含量 Pollutant content in soil | 菌液Composition |
---|---|---|
(1)F | 97.14 mg/kg F | 不添加菌液No fungal addition |
(2)F+T | 97.14 mg/kg F | 20 mL F+ 20 mL T |
(3)F+M | 97.14 mg/kg F | 20 mL F+20 mL M |
(4)F+T+M | 97.14 mg/kg F | 20 mL F+ 10 mL T + 10 mL M |
(5)H | 245.71 mg/kg H | 不添加菌液No fungal addition |
(6)H+T | 245.71 mg/kg H | 20 mL H+ 20 mL T |
(7)H+M | 245.71 mg/kg H | 20 mL H+ 20 mL M |
(8)H+T+M | 245.71 mg/kg H | 20 mL H+ 10 mL T + 10 mL M |
图2 EK降解实验 A: EK修复装置。B: EK修复装置绘制,对电极与参比电极相接后1与钢网阴极3相连,工作电极2与石墨毡阳极4相连。C:土样取点剖面图,1为距离阳极 2 cm点;2为距离阳极4 cm点;3为距离阳极6 cm点(近阴极)
Fig. 2 Methods of EK degradation A: EK remediation device. B: After the counter electrode is connected with the reference electrode, 1 is connected with the steel mesh cathode 3, and the working electrode 2 is connected with the carbon felt anode 4. C: Profile of the sampling sites; 1 is 2 cm from the anode, 2 is 4 cm from the anode, and 3 is 6 cm from the anode(near the cathode)
图3 MFC降解实验 A: MFC实验装置; B: MFC实验装置绘制,阳极与阴极均水平放置,阳极位于阴极正上方,间隔3.5 cm,土壤顶部距容器上方边缘2 cm; C: MFC装置底部,设有小孔方便阴极与空气接触; D: MFC装置剖面图(1:阳极;2:阴极;A:阳极取样点;C:阴极取样点)
Fig. 3 Methods of MFC degradation A: MFC device. B: The anode and the cathode are placed horizontally. The anode is located directly above the cathode, with an interval of 3.5 cm, and the top of the soil is 2 cm from the upper edge of the container. C: At the bottom of the MFC device, a small hole is provided to facilitate the contact between the cathode and the air. D: Profile of MFC device(1: anode; 2: cathode; A: the anode sampling point; C: the cathode sampling point)
图4 EK修复结果 氯氟吡啶酯(F)组:F1、F2(碳纤维2 g)为对照组不加电,F3、F4、F5、F6(碳纤维2 g)施加电压分别为5 V、10 V、10 V、10 V,其中F5组加去离子水,其他条件不变。高效氟吡甲禾灵(H)分组同F组。A: F组土壤pH变化,0点为加电前土壤pH,2 cm、4 cm、6 cm点均为加电处理后土壤pH。B: H组土壤pH 变化。C: F组土壤电导率变化,0点为加电前土壤电导率,2 cm、4 cm、6 cm点均为加电处理后土壤电导率。D: H组土壤电导率变化。E: F组电流密度变化,右上小图为电荷变化量。F: H组电流密度变化。G: F去除率。H: H去除率。不同小写字母代表同层不同处理组之间的显著性差异,P < 0.05,下同
Fig. 4 Results of EK remediation F groups: F1 and F2(+ carbon fiber 2 g)are control groups without electricity; F3, F4, F5, F6(+ carbon fiber 2 g)are subject to voltage 5 V, 10 V, 10 V, 10 V, respectively; deionized water rather than electrolyte is applied in F5 group. The grouping of H is similar to that of F. A: Soil pH changes of F groups. 0, no electrode. B: Soil pH changes of H groups. C: Changes of soil electrical conductivity in F groups. 0, no electrode. D: Changes of soil electrical conductivity in H groups. E: The change of current density in F groups, and the upper right inset shows the changes of charge. F: The change of current density in H groups. G: Removal rate of F. H: Removal rate of H. Different lowercase letters represent the significant differences(P < 0.05)between different treatment groups of the same layer, the same below
图5 真菌修复 A: F组土壤pH变化。B: H组土壤pH变化。C: F组土壤电导率变化。D: H组土壤电导率变化。E: F去除率。F: H去除率。不同小写字母代表同一时间不同处理之间的显著性差异,P < 0.05,下同
Fig. 5 Fungal remediation A: Soil pH changes of F groups. B: Soil pH changes of H groups. C: Changes of soil electrical conductivity in F groups. D: Changes of soil electrical conductivity in H groups. E: Removal rate of F. F: Removal rate of H. Different lowercase letters indicate the significant differences(P < 0.05)between different treatment groups of the same duration
图6 MFC修复 A为阳极,C为阴极。F组MFC电池性能:A:第2天。B:第15天。C:第30天。H组MFC电池性能:D:第2天。E:第15天。F:第30天。G: F组土壤pH变化。H: H组土壤pH变化。I: F组土壤电导率变化。J: H组土壤电导率变化。K: F去除率。L: H去除率
Fig. 6 Results of MFC remediation A: Anode; C: cathode. MFC performance of F groups: A: Day 2. B: Day 15. C: Day 30. MFC performance of H groups: D: Day 2. E: Day 15. F: Day 30. G: Changes of soil pH in F groups. H: Changes of soil pH in H groups. I: Changes of soil electrical conductivity in F groups. J: Changes of soil electrical conductivity in H groups. K: Removal rate of F. L: Removal rate of H
图7 除草剂降解产物 A: F降解产物质谱图; B: H降解产物质谱图; C:氟氯吡啶酸全扫描离子碎片图; D:乙酸大茴香酯全扫描离子碎片图; E: 氟吡甲禾灵全扫描离子碎片图; F: F降解路径; G: H降解路径
Fig. 7 Degradation products of herbicides A: Mass spectrum of F degradation products. B: Mass spectrum of H degradation products. C: Full scan ion fragment diagram of halauxifen. D: Full scan ion fragment diagram of 4-methoxybenzyl acetate. E: Full scan ion fragment diagram of haloxyfop-methyl. F: Degradation pathway of F. G: Degradation pathway of H
处理 Treatment | 氯氟吡啶酯 Florpyrauxifen-benzyl(F) | 高效氟吡甲禾灵Haloxyfop-P(H) | ||||||
---|---|---|---|---|---|---|---|---|
反应 Reaction | 降解速率常数 Degradation rate constant | R2 | 半衰期Half-life/d | 反应 Reaction | 降解速率常数 Degradation rate constant | R2 | 半衰期 Half-life/d | |
EK处理 EK treatment | 一级反应First order reaction | 0.248 ± 0.009 | 0.993 01 | 2.8 | 一级反应First order reaction | 0.053 ± 0.002 | 0.991 44 | 13.0 |
微生物处理 Microbial treatment | 一级反应First order reaction | 0.054 ± 0.001 | 0.946 30 | 12.7 | 二级反应Second order reaction | 1.968×10-4 ± 4.979×10-7 | 0.999 99 | 50.6 |
MFC处理 MFC treatment | 一级反应First order reaction | 0.136 ± 0.001 | 0.998 16 | 5.1 | 二级反应Second order reaction | 5.921×10-4 ± 9.888×10-7 | 0.999 99 | 16.8 |
表2 除草剂降解动力学拟合
Table 2 Degradation kinetics of herbicides
处理 Treatment | 氯氟吡啶酯 Florpyrauxifen-benzyl(F) | 高效氟吡甲禾灵Haloxyfop-P(H) | ||||||
---|---|---|---|---|---|---|---|---|
反应 Reaction | 降解速率常数 Degradation rate constant | R2 | 半衰期Half-life/d | 反应 Reaction | 降解速率常数 Degradation rate constant | R2 | 半衰期 Half-life/d | |
EK处理 EK treatment | 一级反应First order reaction | 0.248 ± 0.009 | 0.993 01 | 2.8 | 一级反应First order reaction | 0.053 ± 0.002 | 0.991 44 | 13.0 |
微生物处理 Microbial treatment | 一级反应First order reaction | 0.054 ± 0.001 | 0.946 30 | 12.7 | 二级反应Second order reaction | 1.968×10-4 ± 4.979×10-7 | 0.999 99 | 50.6 |
MFC处理 MFC treatment | 一级反应First order reaction | 0.136 ± 0.001 | 0.998 16 | 5.1 | 二级反应Second order reaction | 5.921×10-4 ± 9.888×10-7 | 0.999 99 | 16.8 |
[1] |
Vagi MC, Petsas AS. Recent advances on the removal of priority organochlorine and organophosphorus biorecalcitrant pesticides defined by Directive 2013/39/EU from environmental matrices by using advanced oxidation processes: an overview(2007-2018)[J]. J Environ Chem Eng, 2020, 8(1): 102940.
doi: 10.1016/j.jece.2019.102940 URL |
[2] |
Brillas E. Recent development of electrochemical advanced oxidation of herbicides. A review on its application to wastewater treatment and soil remediation[J]. J Clean Prod, 2021, 290: 125841.
doi: 10.1016/j.jclepro.2021.125841 URL |
[3] | 刘国强, 顾轩竹, 胡哲伟, 等. 农业土壤有机污染生物修复技术研究进展[J]. 江苏农业科学, 2022, 50(1): 27-33. |
Liu GQ, Gu XZ, Hu ZW, et al. Research progress on bioremediation technology of agricultural soil organic pollution[J]. Jiangsu Agric Sci, 2022, 50(1): 27-33. | |
[4] |
Gidudu B, Chirwa EMN. The role of pH, electrodes, surfactants, and electrolytes in electrokinetic remediation of contaminated soil[J]. Molecules, 2022, 27(21): 7381.
doi: 10.3390/molecules27217381 URL |
[5] |
Chishti Z, Hussain S, Arshad KR, et al. Microbial degradation of chlorpyrifos in liquid media and soil[J]. J Environ Manage, 2013, 114: 372-380.
doi: 10.1016/j.jenvman.2012.10.032 pmid: 23176983 |
[6] | 杨珍珍, 耿兵, 田云龙, 等. 土壤有机污染物电化学修复技术研究进展[J]. 土壤学报, 2021, 58(5): 1110-1122. |
Yang ZZ, Geng B, Tian YL, et al. Research progresses on remediation of organic contaminated soils with electrochemical technologies[J]. Acta Pedol Sin, 2021, 58(5): 1110-1122. | |
[7] |
Hwang JI, Norsworthy JK, González-Torralva F, et al. Non-target-site resistance mechanism of barnyardgrass[Echinochloa crus-galli(L.)P. Beauv.]to florpyrauxifen-benzyl[J]. Pest Manag Sci, 2022, 78(1): 287-295.
doi: 10.1002/ps.v78.1 URL |
[8] | 楼小华, 马旭灿, 方超. 珍珠粉治疗联吡啶类农药中毒致消化道损伤的疗效观察[J]. 浙江临床医学, 2021, 23(11): 1600-1601. |
Lou XH, Ma XC, Fang C. Observation on therapeutic effect of pearl powder on digestive tract injury caused by bipyridine pesticide poisoning[J]. Zhejiang Clin Med J, 2021, 23(11): 1600-1601. | |
[9] |
Netherland M D, Richardson R J. Evaluating sensitivity of five aquatic plants to a novel arylpicolinate herbicide utilizing an organization for economic cooperation and development protocol[J]. Weed Science, 2016, 64(1): 181-190.
doi: 10.1614/WS-D-15-00092.1 URL |
[10] | 秦璐, 宋秀凯, 刘丽娟, 等. 高效氟吡甲禾灵对海洋生物的急性毒性与水质基准推导[J]. 环境科学研究, 2022, 35(6): 1509-1518. |
Qin L, Song XK, Liu LJ, et al. Acute toxicity of haloxyfop-P-methyl to marine species and its seawater quality criteria[J]. Res Environ Sci, 2022, 35(6): 1509-1518. | |
[11] | 晏江波, 杨秀英, 徐春燕, 等. 基于UV/PMS工艺降解水中高效氟吡甲禾灵研究[J]. 资源开发与市场, 2017, 33(4): 481-484. |
Yan JB, Yang XY, Xu CY, et al. Study on degradation of haloxyfop-r-methyl in water based on UV/PMS technology[J]. Resour Dev Mark, 2017, 33(4): 481-484. | |
[12] |
Wang CH, Qiu JG, Yang YJ, et al. Identification and characterization of a novel carboxylesterase(FpbH)that hydrolyzes aryloxyphenoxypropionate herbicides[J]. Biotechnol Lett, 2017, 39(4): 553-560.
doi: 10.1007/s10529-016-2276-z URL |
[13] |
Li XJ, Li Y, Zhao XD, et al. Restructured fungal community diversity and biological interactions promote metolachlor biodegradation in soil microbial fuel cells[J]. Chemosphere, 2019, 221: 735-749.
doi: S0045-6535(19)30040-2 pmid: 30682662 |
[14] |
Hao DC, Zhang CR, Xiao PG. The first Taxus rhizosphere microbiome revealed by shotgun metagenomic sequencing[J]. J Basic Microbiol, 2018, 58(6): 501-512.
doi: 10.1002/jobm.v58.6 URL |
[15] |
Hao DC, Song SM, Mu J, et al. Unearthing microbial diversity of Taxus rhizosphere via MiSeq high-throughput amplicon sequencing and isolate characterization[J]. Sci Rep, 2016, 6: 22006.
doi: 10.1038/srep22006 |
[16] | 郝大程, 胡文丽, 宋思梦, 等. 一种红豆杉根际多环芳烃降解菌的筛选方法及应用:中国, CN201510411700.4[P]. 2018-06-19. |
Hao DC, Hu WL, Song SM, et al. Screening method and application of a polycyclic aromatic hydrocarbon degrading bacterium in the rhizosphere of Taxus chinensis: China, CN201510411700.4[P]. 2018-06-19. | |
[17] | 郝大程, 宋思梦, 胡文丽. 一种产漆酶真菌菌株的分离优化方法及应用:中国, CN201510411623.2[P]. 2018-08-24. |
Hao DC, Song SM, Hu WL. Isolation and optimization method and application of a laccase producing fungal strain: China, CN201510411623.2[P]. 2018-08-24. | |
[18] |
Gao R, Hao DC, Hu WL, et al. Transcriptome profile of polycyclic aromatic hydrocarbon-degrading fungi isolated from Taxus rhizosphere[J]. Curr Sci, 2019, 116(7): 1218.
doi: 10.18520/cs/v116/i7/1218-1228 URL |
[19] |
Hao DC, Song SM, Cheng Y, et al. Functional and transcriptomic characterization of a dye-decolorizing fungus from Taxus rhizosphere[J]. Pol J Microbiol, 2018, 67(4): 417-430.
doi: 10.21307/pjm-2018-050 pmid: 30550228 |
[20] |
Khan R, Fulekar MH. Mineralization of a sulfonated textile dye Reactive Red 31 from simulated wastewater using pellets of Aspergillus bombycis[J]. Bioresour Bioprocess, 2017, 4(1): 23.
doi: 10.1186/s40643-017-0153-9 URL |
[21] | 张嘉月, 杨闻翰, 尹秀娥, 等. 氯氟吡啶酯原药的高效液相色谱分析[J]. 农药, 2021, 60(1): 32-34. |
Zhang JY, Yang WH, Yin XE, et al. Analysis of florpyrauxifen-benzyl TC by HPLC[J]. Agrochemicals, 2021, 60(1): 32-34. | |
[22] | 苟健, 潘志明, 余海洋. 食用植物油中高效氟吡甲禾灵和吡氟甲禾灵的气相色谱-质谱测定方法研究[J]. 中国测试, 2017, 43(9): 64-67, 80. |
Gou J, Pan ZM, Yu HY. Determination of haloxyfop-P-methyl and haloxyfop-ethoxyethyl in edible vegetable oils by gas chromatography-mass spectrometry[J]. China Meas Test, 2017, 43(9): 64-67, 80. | |
[23] | 李斌绪, 朱昌雄, 宋婷婷, 等. 电动力修复四环素类抗生素污染土壤的效果研究[J]. 环境科学与技术, 2020, 43(5): 187-194. |
Li BX, Zhu CX, Song TT, et al. Effect of electrodynamic remediation on tetracycline-contaminated soil[J]. Environ Sci Technol, 2020, 43(5): 187-194. | |
[24] | 赵晓东, 李晓晶, 赵鹏宇, 等. 土壤微生物电化学系统降解四环素的机理[J]. 中国环境科学, 2021, 41(2): 778-786. |
Zhao XD, Li XJ, Zhao PY, et al. Mechanism of tetracycline degradation by soil microbial electrochemical systems[J]. China Environ Sci, 2021, 41(2): 778-786. | |
[25] |
李园园, 王元鉴, 朱磊, 等. 过渡金属参与的C-F键官能团化反应机理研究进展[J]. 有机化学, 2019, 39(1): 38-46.
doi: 10.6023/cjoc201810020 |
Li YY, Wang YJ, Zhu L, et al. Theoretical advances on the mechanism of transition metal-catalyzed C-F functionalization[J]. Chin J Org Chem, 2019, 39(1): 38-46.
doi: 10.6023/cjoc201810020 URL |
|
[26] | 梁庆霞, 王加宁, 周方园, 等. 土壤中石油烃检测方法比较及降解动力学分析[J]. 中国环境科学, 2023, 43(8): 4194-4201. |
Liang QX, Wang JN, Zhou FY, et al. Comparison of methods for the detection of petroleum hydrocarbon fractions and analysis of degradation kinetics[J]. China Environ Sci, 2023, 43(8): 4194-4201. | |
[27] |
Piel C, Pouchieu C, Carles C, et al. Agricultural exposures to carbamate herbicides and fungicides and central nervous system tumour incidence in the cohort AGRICAN[J]. Environ Int, 2019, 130: 104876.
doi: 10.1016/j.envint.2019.05.070 URL |
[28] |
Hao DC, Li XJ, Xiao PG, et al. The utility of electrochemical systems in microbial degradation of polycyclic aromatic hydrocarbons: discourse, diversity and design[J]. Front Microbiol, 2020, 11: 557400.
doi: 10.3389/fmicb.2020.557400 URL |
[29] |
郝大程, 周建强, 韩君. 土壤重金属和有机污染物的微生物修复: 生物强化和生物刺激[J]. 生物技术通报, 2017, 33(10): 9-17.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0294 |
Hao DC, Zhou JQ, Han J. Microbial remediation of soil heavy metal and organic pollutants: bioaugmentation and biostimulation[J]. Biotechnol Bull, 2017, 33(10): 9-17. | |
[30] |
邹雪峰, 李铭刚, 包玲风, 等. 一株分泌型铁载体真菌分离鉴定及生物活性研究[J]. 生物技术通报, 2022, 38(3): 130-138.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0394 |
Zou XF, Li MG, Bao LF, et al. Isolation and identification of a secretory siderophore fungus, and its biological activity[J]. Biotechnol Bull, 2022, 38(3): 130-138. | |
[31] | 李晓晶, 赵倩, 张月勇, 等. 微生物燃料电池修复石油污染盐碱土壤[J]. 环境工程学报, 2017, 11(2): 1185-1191. |
Li XJ, Zhao Q, Zhang YY, et al. Microbial fuel cell remediation for saline-alkaline soil contaminated by petroleum hydrocarbons[J]. Chin J Environ Eng, 2017, 11(2): 1185-1191. | |
[32] |
黄阳天, 陆育彪, 黄益帖, 等. 产电海洋脂肪酶生产菌的分离筛选鉴定及培养条件研究[J]. 生物技术通报, 2020, 36(12): 91-97.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0833 |
Huang YT, Lu YB, Huang YT, et al. Screening and identification of marine electricity-producing and lipase-producing bacteria and preliminary study on its culture conditions[J]. Biotechnol Bull, 2020, 36(12): 91-97. | |
[33] |
Wang K, Yang SD, Yu X, et al. Microplastics degradation stimulated by in situ bioelectric field in agricultural soils[J]. Environ Int, 2023, 177: 108035.
doi: 10.1016/j.envint.2023.108035 URL |
[34] | 屠王满措, 马有宁, 潘九月, 等. 氯氟吡啶酯水解产物的鉴定及其检测方法的建立[J]. 农产品质量与安全, 2021(3): 40-48. |
Tu W, Ma YN, Pan JY, et al. Identification of hydrolysis products of florpyrauxifen-benzyl and establishment of detection method[J]. Qual Saf Agro Prod, 2021(3): 40-48. | |
[35] | 吴发远, 张爽, 高金胜. 高效氟吡甲禾灵合成方法的探索研究[J]. 中国西部科技, 2011, 10(9): 6-8. |
Wu FY, Zhang S, Gao JS. Exploration and study on the synthesis method of high-efficiency flupiromethoate[J]. Sci Technol West China, 2011, 10(9): 6-8. | |
[36] | 丁玲玲, 薛萐, 杨晓梅. 土壤水分及磷水平对草甘膦农药降解动力学的影响[J/OL]. 土壤学报, 2023. https://kns.cnki.net/kcms/detail/32.1119.P.20230411.1317.008.html. |
Ding LL, Xue X, Yang XM. Effect of soil moisture and phosphorus level on degradation kinetics of glyphosate pesticides[J/OL]. Journal of Soil Science, 2023. https://kns.cnki.net/kcms/detail/32.1119.P.20230411.1317.008.html. | |
[37] |
Li XJ, Wang X, Zhao Q, et al. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells[J]. Biosens Bioelectron, 2016, 85: 135-141.
doi: S0956-5663(16)30387-6 pmid: 27162144 |
[1] | 高晓蓉, 丁尧, 吕军. 芘降解菌Pseudomonas sp. PR3的植物促生特性及其对芘胁迫下水稻生长的影响[J]. 生物技术通报, 2022, 38(9): 226-236. |
[2] | 沈聪, 刘爽, 王春霞, 严雪梅, 代金霞. 盐池采油区污染土壤石油降解菌的筛选鉴定及其降解特性[J]. 生物技术通报, 2021, 37(6): 127-135. |
[3] | 黄阳天, 陆育彪, 黄益帖, 孟繁龙, 徐凯文, 李鹏. 产电海洋脂肪酶生产菌的分离筛选鉴定及培养条件研究[J]. 生物技术通报, 2020, 36(12): 91-97. |
[4] | 刘军生, 解修超, 罗阳兰, 邓百万, 柏秋月, 燕孟琛, 白星. 抗镉内生细菌阿耶波多氏芽孢杆菌的分离鉴定及生物学特性[J]. 生物技术通报, 2019, 35(2): 64-72. |
[5] | 张霞, 肖莹, 周巧红, 吴振斌. 微生物燃料电池中产电微生物的研究进展[J]. 生物技术通报, 2017, 33(10): 64-73. |
[6] | 高宇, 程潜, 张梦君, 朱振宇, 胡婷婷, 杨宇. 镉污染土壤修复技术研究[J]. 生物技术通报, 2017, 33(10): 103-110. |
[7] | 付洁;赵海;靳艳玲;甘明哲;. 微生物燃料电池阳极产电微生物和阴极受体特性及研究进展[J]. , 2008, 0(S1): 90-94. |
[8] | 袁世斌;. 生物技术在放射性污染土壤修复中的研究进展[J]. , 2008, 0(S1): 121-124. |
[9] | 孟夏;. 微生物燃料电池研究取得进展[J]. , 1988, 0(04): 24-24. |
[10] | . 能源上的应用[J]. , 1987, 0(03): 112-114. |
[11] | . 能源上的应用[J]. , 1986, 0(10): 104-105. |
[12] | . 能源上的应用[J]. , 1985, 0(03): 110-116. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||