生物技术通报 ›› 2024, Vol. 40 ›› Issue (3): 273-285.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0942
常海霞(), 李明源, 麦日艳古·亚生, 周茜, 王继莲()
收稿日期:
2023-10-06
出版日期:
2024-03-26
发布日期:
2024-04-08
通讯作者:
王继莲,女,硕士,副教授,研究方向:农用微生物资源;E-mail: wjilian0710@sina.com作者简介:
常海霞,女,硕士研究生,研究方向:农用微生物资源;E-mail: chang_0513@163.com
基金资助:
CHANG Hai-xia(), LI Ming-yuan, MAIRIYANGU·Yasheng , ZHOU Qian, WANG Ji-lian()
Received:
2023-10-06
Published:
2024-03-26
Online:
2024-04-08
摘要:
【目的】 探究产胞外多糖(exopolysaccharides, EPS)菌株在促进盐碱土中植物生长,改善土壤性能等方面的影响,为研制适用于盐碱土壤修复的微生物菌剂奠定基础。【方法】 从新疆喀什地区盐碱草地根际土壤中筛选产胞外多糖菌株,基于16S rRNA基因序列比对及系统发育分析对产胞外多糖菌株进行种属鉴定,采用单因素和响应面法优化最高产菌株的培养基组分,通过接种试验评估其对盐碱土栽培植物的促生效果及土壤团聚体的影响。【结果】 共筛选出19株具有产胞外多糖能力的菌株,隶属于7个菌属,以假单胞菌属(Pseudomonas)占绝对优势。菌株产糖量介于236-1 544 mg/L,尤以泛菌属Pantoea MQ A0产糖量最高,且兼具固氮、产吲哚乙酸(IAA)和铁载体、解磷等功能。MQ A0的最适产糖发酵培养基为甘油12.5 mL/L,蛋白胨9.0 g/L,酵母粉5.5 g/L,CaCO3 5.1 g/L,在此条件下菌株产糖量达2 436 mg/L,较优化前增加57.8%。接种MQ A0发酵液使盐碱土栽培的玉米株高、鲜重、茎粗、须根数和总根长分别提高41.2%、203.0%、42.7%、30.4%和99.7%;粗多糖提取液对土壤团聚体的形成也有显著促进作用(P<0.05)。【结论】 高产胞外多糖菌株MQ A0兼具多种促生特性,在促进盐碱土中植物生长和土壤改良方面效果显著。
常海霞, 李明源, 麦日艳古·亚生, 周茜, 王继莲. 产胞外多糖多功能促生菌的筛选鉴定及促生评价[J]. 生物技术通报, 2024, 40(3): 273-285.
CHANG Hai-xia, LI Ming-yuan, MAIRIYANGU·Yasheng , ZHOU Qian, WANG Ji-lian. Screening and Growth-promoting Characteristics of Multifunctional Exopolysaccharides-producing Bacteria[J]. Biotechnology Bulletin, 2024, 40(3): 273-285.
图1 基于16S rRNA基因的产胞外多糖菌株系统发育树
Fig. 1 Phylogenetic tree of bacterial 16S rRNA gene sequences revealing exopolysaccharides-producing strains evolutionary divergence
编号 Strain No. | 多糖产量Exopolysaccharides yield/(mg·L-1) | 固氮Nitrogen fixation | IAA分泌量 IAA concentration/ (µg·mL-1) | 产铁载体Siderophore | 无机磷含量Inorganic phosphate solubility /(mg·L-1) | 有机磷含量 Organic phosphate solubility/ (mg·L-1) |
---|---|---|---|---|---|---|
A1 | 302±2.83 | - | 7.77±2.39 | + | 2.61±1.63 | 1.26±0.55 |
B2 | 241±1.92 | + | 7.62±1.67 | + | 1.54±0.56 | 0.84±0.01 |
D1 | 256±0.87 | + | 8.38±2.26 | + | 2.24±1.01 | 0.60±0.03 |
MQ A0 | 1544±3.21 | + | 7.15±2.83 | + | 9.39±2.34 | 12.33±3.24 |
MQ 2-1-1 | 443±1.44 | - | 7.00±3.64 | - | - | - |
MQ 2-1-2 | 236±2.59 | + | 5.77±2.11 | + | 8.92±2.46 | 11.82±0.94 |
MQ 2-2 | 386±4.13 | + | 6.54±3.39 | + | 8.59±1.16 | 6.63±1.64 |
MQ 2-3 | 464±0.91 | + | 3.62±2.71 | - | 1.63±0.29 | 0.84±0.22 |
MQ 2-4 | 442±1.67 | + | 10.08±0.84 | + | 8.59±0.06 | 14.11±3.51 |
MQ 5-1 | 513±4.11 | + | 7.92±1.94 | + | 7.33±2.21 | 7.14±1.61 |
MQ 5-2 | 462±3.82 | + | 11.15±5.36 | + | 1.91±0.66 | 6.49±0.34 |
MQ 5-3 | 507±4.92 | + | 7.00±4.15 | + | 1.49±0.59 | 7.75±0.93 |
MQ 5-4 | 513±5.14 | + | 5.62±2.89 | + | 0.65±0.11 | 7.33±0.36 |
MQ 5-5 | 331±3.33 | + | 5.31±2.14 | + | 0.44±0.21 | 8.27±1.24 |
MQ 5-6 | 572±1.49 | + | 5.92±1.27 | + | 4.06±1.11 | 8.59±0.94 |
MQ 5-7 | 459±3.08 | + | 5.92±2.98 | + | 1.82±0.04 | 10.88±1.07 |
MQ 7-1 | 623±3.42 | - | 4.85±0.13 | + | 0.33±0.02 | 2.43±0.04 |
MQ 7-5 | 369±1.53 | - | 10.23±3.64 | + | - | 2.66±0.26 |
MQ 7-6 | 1342±2.67 | - | 7.31±1.69 | + | - | - |
表1 胞外多糖产量及其他促生能力测定
Table 1 Determination of exopolysaccharide yield and other growth-promoting characteristics
编号 Strain No. | 多糖产量Exopolysaccharides yield/(mg·L-1) | 固氮Nitrogen fixation | IAA分泌量 IAA concentration/ (µg·mL-1) | 产铁载体Siderophore | 无机磷含量Inorganic phosphate solubility /(mg·L-1) | 有机磷含量 Organic phosphate solubility/ (mg·L-1) |
---|---|---|---|---|---|---|
A1 | 302±2.83 | - | 7.77±2.39 | + | 2.61±1.63 | 1.26±0.55 |
B2 | 241±1.92 | + | 7.62±1.67 | + | 1.54±0.56 | 0.84±0.01 |
D1 | 256±0.87 | + | 8.38±2.26 | + | 2.24±1.01 | 0.60±0.03 |
MQ A0 | 1544±3.21 | + | 7.15±2.83 | + | 9.39±2.34 | 12.33±3.24 |
MQ 2-1-1 | 443±1.44 | - | 7.00±3.64 | - | - | - |
MQ 2-1-2 | 236±2.59 | + | 5.77±2.11 | + | 8.92±2.46 | 11.82±0.94 |
MQ 2-2 | 386±4.13 | + | 6.54±3.39 | + | 8.59±1.16 | 6.63±1.64 |
MQ 2-3 | 464±0.91 | + | 3.62±2.71 | - | 1.63±0.29 | 0.84±0.22 |
MQ 2-4 | 442±1.67 | + | 10.08±0.84 | + | 8.59±0.06 | 14.11±3.51 |
MQ 5-1 | 513±4.11 | + | 7.92±1.94 | + | 7.33±2.21 | 7.14±1.61 |
MQ 5-2 | 462±3.82 | + | 11.15±5.36 | + | 1.91±0.66 | 6.49±0.34 |
MQ 5-3 | 507±4.92 | + | 7.00±4.15 | + | 1.49±0.59 | 7.75±0.93 |
MQ 5-4 | 513±5.14 | + | 5.62±2.89 | + | 0.65±0.11 | 7.33±0.36 |
MQ 5-5 | 331±3.33 | + | 5.31±2.14 | + | 0.44±0.21 | 8.27±1.24 |
MQ 5-6 | 572±1.49 | + | 5.92±1.27 | + | 4.06±1.11 | 8.59±0.94 |
MQ 5-7 | 459±3.08 | + | 5.92±2.98 | + | 1.82±0.04 | 10.88±1.07 |
MQ 7-1 | 623±3.42 | - | 4.85±0.13 | + | 0.33±0.02 | 2.43±0.04 |
MQ 7-5 | 369±1.53 | - | 10.23±3.64 | + | - | 2.66±0.26 |
MQ 7-6 | 1342±2.67 | - | 7.31±1.69 | + | - | - |
图2 不同碳源对胞外多糖产量的影响 不同小写字母表示差异显著(P<0.05),下同
Fig. 2 Effects of different carbon sources on exopolysaccharide yield Different lowercase letters indicate significant differences(P <0.05). The same below
序号 No. | A:甘油 Glycerol/(mL·L-1) | B:蛋白胨 Peptone/(g·L-1) | C:酵母粉 Yeast extract/(g·L-1) | D:碳酸钙 CaCO3/(g·L-1) | Y:产糖量 Exopolysaccharide yield/(mg·L-1) |
---|---|---|---|---|---|
1 | 10 | 10 | 6 | 4 | 1 564 |
2 | 5 | 10 | 5 | 6 | 1 267 |
3 | 10 | 15 | 6 | 5 | 1 667 |
4 | 5 | 5 | 5 | 5 | 1 079 |
5 | 10 | 10 | 5 | 5 | 2 399 |
6 | 15 | 10 | 5 | 4 | 2 058 |
7 | 5 | 10 | 4 | 5 | 1 215 |
8 | 10 | 10 | 6 | 6 | 1 793 |
9 | 10 | 5 | 6 | 5 | 1 607 |
10 | 10 | 10 | 5 | 5 | 2 383 |
11 | 10 | 10 | 4 | 6 | 1 348 |
12 | 10 | 15 | 5 | 4 | 1 674 |
13 | 10 | 10 | 5 | 5 | 2 315 |
14 | 10 | 10 | 5 | 5 | 2 331 |
15 | 15 | 10 | 6 | 5 | 1 876 |
16 | 10 | 5 | 5 | 4 | 1 396 |
17 | 15 | 10 | 5 | 6 | 2 017 |
18 | 15 | 10 | 4 | 5 | 1 858 |
19 | 5 | 10 | 5 | 4 | 1 296 |
20 | 10 | 5 | 5 | 6 | 1 804 |
21 | 15 | 5 | 5 | 5 | 2 184 |
22 | 5 | 10 | 6 | 5 | 1 479 |
23 | 10 | 5 | 4 | 5 | 1 341 |
24 | 10 | 15 | 4 | 5 | 1 455 |
25 | 15 | 15 | 5 | 5 | 1 435 |
26 | 10 | 10 | 5 | 5 | 2 411 |
27 | 10 | 15 | 5 | 6 | 1 549 |
28 | 5 | 15 | 5 | 5 | 1 628 |
29 | 10 | 10 | 4 | 4 | 1 546 |
表2 BOX-Behnken实验设计与结果
Table 2 Experimental design and results of BOX-Behnken
序号 No. | A:甘油 Glycerol/(mL·L-1) | B:蛋白胨 Peptone/(g·L-1) | C:酵母粉 Yeast extract/(g·L-1) | D:碳酸钙 CaCO3/(g·L-1) | Y:产糖量 Exopolysaccharide yield/(mg·L-1) |
---|---|---|---|---|---|
1 | 10 | 10 | 6 | 4 | 1 564 |
2 | 5 | 10 | 5 | 6 | 1 267 |
3 | 10 | 15 | 6 | 5 | 1 667 |
4 | 5 | 5 | 5 | 5 | 1 079 |
5 | 10 | 10 | 5 | 5 | 2 399 |
6 | 15 | 10 | 5 | 4 | 2 058 |
7 | 5 | 10 | 4 | 5 | 1 215 |
8 | 10 | 10 | 6 | 6 | 1 793 |
9 | 10 | 5 | 6 | 5 | 1 607 |
10 | 10 | 10 | 5 | 5 | 2 383 |
11 | 10 | 10 | 4 | 6 | 1 348 |
12 | 10 | 15 | 5 | 4 | 1 674 |
13 | 10 | 10 | 5 | 5 | 2 315 |
14 | 10 | 10 | 5 | 5 | 2 331 |
15 | 15 | 10 | 6 | 5 | 1 876 |
16 | 10 | 5 | 5 | 4 | 1 396 |
17 | 15 | 10 | 5 | 6 | 2 017 |
18 | 15 | 10 | 4 | 5 | 1 858 |
19 | 5 | 10 | 5 | 4 | 1 296 |
20 | 10 | 5 | 5 | 6 | 1 804 |
21 | 15 | 5 | 5 | 5 | 2 184 |
22 | 5 | 10 | 6 | 5 | 1 479 |
23 | 10 | 5 | 4 | 5 | 1 341 |
24 | 10 | 15 | 4 | 5 | 1 455 |
25 | 15 | 15 | 5 | 5 | 1 435 |
26 | 10 | 10 | 5 | 5 | 2 411 |
27 | 10 | 15 | 5 | 6 | 1 549 |
28 | 5 | 15 | 5 | 5 | 1 628 |
29 | 10 | 10 | 4 | 4 | 1 546 |
方差来源Source | 平方和Sum of squares | 自由度Degree of freedom | 均方Mean square | F | P | 显著性Significant |
---|---|---|---|---|---|---|
Model | 4230000 | 14 | 302000 | 41.5 | < 0.0001 | ** |
A | 1000000 | 1 | 1000000 | 137.23 | < 0.0001 | ** |
B | 0.75 | 1 | 0.75 | 0.000103 | 0.992 | |
C | 125000 | 1 | 125000 | 17.11 | 0.001 | ** |
D | 4961.33 | 1 | 4961.33 | 0.68 | 0.4231 | |
AB | 421000 | 1 | 421000 | 57.8 | < 0.0001 | ** |
AC | 15129 | 1 | 15129 | 2.08 | 0.1716 | |
AD | 36 | 1 | 36 | 0.00494 | 0.945 | |
BC | 729 | 1 | 729 | 0.1 | 0.7564 | |
BD | 71022.25 | 1 | 71022.25 | 9.75 | 0.0075 | ** |
CD | 45582.25 | 1 | 45582.25 | 6.26 | 0.0254 | * |
A2 | 790000 | 1 | 790000 | 108.36 | < 0.0001 | ** |
B2 | 1150000 | 1 | 1150000 | 157.42 | < 0.0001 | ** |
C2 | 1200000 | 1 | 1200000 | 164.04 | < 0.0001 | ** |
D2 | 836000 | 1 | 836000 | 114.66 | < 0.0001 | ** |
表3 Box-Behnken设计方差分析
Table 3 Box-Behnken design variance analysis
方差来源Source | 平方和Sum of squares | 自由度Degree of freedom | 均方Mean square | F | P | 显著性Significant |
---|---|---|---|---|---|---|
Model | 4230000 | 14 | 302000 | 41.5 | < 0.0001 | ** |
A | 1000000 | 1 | 1000000 | 137.23 | < 0.0001 | ** |
B | 0.75 | 1 | 0.75 | 0.000103 | 0.992 | |
C | 125000 | 1 | 125000 | 17.11 | 0.001 | ** |
D | 4961.33 | 1 | 4961.33 | 0.68 | 0.4231 | |
AB | 421000 | 1 | 421000 | 57.8 | < 0.0001 | ** |
AC | 15129 | 1 | 15129 | 2.08 | 0.1716 | |
AD | 36 | 1 | 36 | 0.00494 | 0.945 | |
BC | 729 | 1 | 729 | 0.1 | 0.7564 | |
BD | 71022.25 | 1 | 71022.25 | 9.75 | 0.0075 | ** |
CD | 45582.25 | 1 | 45582.25 | 6.26 | 0.0254 | * |
A2 | 790000 | 1 | 790000 | 108.36 | < 0.0001 | ** |
B2 | 1150000 | 1 | 1150000 | 157.42 | < 0.0001 | ** |
C2 | 1200000 | 1 | 1200000 | 164.04 | < 0.0001 | ** |
D2 | 836000 | 1 | 836000 | 114.66 | < 0.0001 | ** |
处理 Treatment group | 株高 Plant height/cm | 根长 Root length/cm | 须根数 Lateral root number | 茎粗 Stem diameter/mm | 鲜重 Fresh weight/g | 叶绿素含量 Chlorophyll content/(mg·g-1) |
---|---|---|---|---|---|---|
发酵液Fermentation broth | 56.60±6.076a | 52.78±5.926a | 7.50±1.732a | 6.25±0.311a | 5.03±0.471a | 20.80±0.901a |
粗多糖 EPS | 54.88±5.393a | 45.88±2.732b | 7.25±1.500a | 6.28±0.359a | 4.16±0.334a | 22.10±1.105a |
对照 Control check | 40.10±3.340b | 26.43±4.378c | 5.75±0.957b | 4.38±0.427b | 1.66±0.236b | 13.20±2.150b |
表4 不同处理对玉米幼苗生长的影响
Table 4 Effects of different treatments on the growth of maize seedlings
处理 Treatment group | 株高 Plant height/cm | 根长 Root length/cm | 须根数 Lateral root number | 茎粗 Stem diameter/mm | 鲜重 Fresh weight/g | 叶绿素含量 Chlorophyll content/(mg·g-1) |
---|---|---|---|---|---|---|
发酵液Fermentation broth | 56.60±6.076a | 52.78±5.926a | 7.50±1.732a | 6.25±0.311a | 5.03±0.471a | 20.80±0.901a |
粗多糖 EPS | 54.88±5.393a | 45.88±2.732b | 7.25±1.500a | 6.28±0.359a | 4.16±0.334a | 22.10±1.105a |
对照 Control check | 40.10±3.340b | 26.43±4.378c | 5.75±0.957b | 4.38±0.427b | 1.66±0.236b | 13.20±2.150b |
处理 Treatment group | 发酵液Fermentation broth | 粗多糖EPS | 对照Control check | |||||
---|---|---|---|---|---|---|---|---|
干筛法Dry sieving | 湿筛法Wet sieving | 干筛法Dry sieving | 湿筛法Wet sieving | 干筛法Dry sieving | 湿筛法Wet sieving | |||
R0.25% | 73.88±4.756a | 77.22±2.752a | 69.96±4.106a | 32.84±1.586b | 35.44±3.652b | 27.52±1.881c | ||
MWD/mm | 1.144±0.258a | 1.209±0.103a | 1.054±0.072a | 0.430±0.066b | 0.685±0.068b | 0.423±0.070b | ||
PAD% | 55.54±4.527b | 54.11±3.980b | 60.66±4.466a |
表5 不同处理对土壤团聚体的影响
Table 5 Effects of different treatments on soil aggregates
处理 Treatment group | 发酵液Fermentation broth | 粗多糖EPS | 对照Control check | |||||
---|---|---|---|---|---|---|---|---|
干筛法Dry sieving | 湿筛法Wet sieving | 干筛法Dry sieving | 湿筛法Wet sieving | 干筛法Dry sieving | 湿筛法Wet sieving | |||
R0.25% | 73.88±4.756a | 77.22±2.752a | 69.96±4.106a | 32.84±1.586b | 35.44±3.652b | 27.52±1.881c | ||
MWD/mm | 1.144±0.258a | 1.209±0.103a | 1.054±0.072a | 0.430±0.066b | 0.685±0.068b | 0.423±0.070b | ||
PAD% | 55.54±4.527b | 54.11±3.980b | 60.66±4.466a |
[1] | 王艳霞, 解志红, 张蕾, 等. 田菁根际促生菌的筛选及其促生耐盐效果[J]. 微生物学报, 2020, 60(5): 1023-1035. |
Wang YX, Xie ZH, Zhang L, et al. Screening of plant growth promoting and salt tolerant rhizobacteria in Sesbania cannabina[J]. Acta Microbiologica Sinica, 2020, 60(5): 1023-1035. | |
[2] | 霍佳慧, 毕少杰, 于欣卉, 等. 植物根际促生菌作用机制研究进展[J]. 现代农业科技, 2022, 51(9): 90-96. |
Huo JH, Bi SJ, Yu XH, et al. Research progress on the mechanism of plant growth promoting rhizosphere[J]. Modern Agricultural Science and Technology, 2022, 51(9): 90-96. | |
[3] | 刘婷婷, 侯丽君, 刘佳茜, 等. 基于文献计量的塑料地膜研究发展态势分析[J]. 中国农业大学学报, 2020, 25(9): 90-103. |
Liu TT, Hou LJ, Liu JX, et al. Development trend analysis of plastic mulching film based on bibliometric analysis[J]. Journal of China Agricultural University, 2020, 25(9): 90-103. | |
[4] |
Liu ML, Wang C, Wang FY, et al. Maize growth and nutrient uptake following integrated improvement of vermicompost and humic acid fertilizer on coastal saline soil[J]. Applied Soil Ecology, 2019, 142: 147-154.
doi: 10.1016/j.apsoil.2019.04.024 URL |
[5] | 张雯雯. 蚯蚓和菌根协同促进盐碱地玉米生长的作用机理[D]. 北京: 中国农业大学, 2018. |
Zhang WW. Mechanism of action of earthworms and mycorrhizae for synergistic promotion of maize growth in saline soil[D]. Beijing: China Agricultural University, 2018. | |
[6] |
Raza W, Yang W, Yuan J, et al. Optimization and characterization of a polysaccharide produced by Pseudomonas fluorescens WR-1 and its antioxidant activity[J]. Carbohydrate Polymers, 2012, 90(2): 921-929.
doi: 10.1016/j.carbpol.2012.06.021 URL |
[7] |
Jivkova D, Sathiyanarayanan G, Harir M, et al. Production and characterization of a novel exopolysaccharide from Ramlibacter tataouinensis[J]. Molecules, 2022, 27(21): 7172.
doi: 10.3390/molecules27217172 URL |
[8] | 马岩石, 刘韩, 裴芳艺. 产胞外多糖酵母菌的分离鉴定及其发酵条件优化[J]. 食品研究与开发, 2020, 41(14): 68-76. |
Ma YS, Liu H, Pei FY. Isolation and identification of an axopolysaccharide-producing Sporidiobolus and optimization of fermentation process[J]. Food Research and Development, 2020, 41(14): 68-76. | |
[9] | 魏宏宇, 李怡, 彭帅英, 等. 胞外多糖促进胁迫条件下农作物生长的研究与展望[J]. 江苏农业学报, 2022, 38(4): 1123-1134. |
Wei HY, Li Y, Peng SY, et al. Promoting crop growth under stress conditions by exopolysaccharides: review and persctive[J]. Jiangsu Journal of Agriculture Sciences, 2022, 38(4):1123-1134. | |
[10] |
Sun L, Lei P, Wang Q, et al. The endophyte Pantoea alhagi NX-11 alleviates salt stress damage to rice seedlings by secreting exopolysaccharides[J]. Frontiers in Microbiology, 2020, 10:3122.
doi: 10.3389/fmicb.2019.03122 URL |
[11] |
Ghazala I, Chiab N, Saidi MN, et al. The plant growth-promoting bacteria strain Bacillus mojavensis I4 enhanced salt stress tolerance in durum wheat[J]. Current Microbiology, 2023, 80(5):178.
doi: 10.1007/s00284-023-03288-y pmid: 37036517 |
[12] |
Cania B, Vestergaard G, Kublik S, et al. Biological soil crusts from different soil substrates harbor distinct bacterial groups with the potential to produce exopolysaccharides and lipopolysaccharides[J]. Microbial Ecology, 2020, 79: 326-341.
doi: 10.1007/s00248-019-01415-6 pmid: 31372685 |
[13] | 李慧芬, 方安然, 冯海霞, 等. 胞外多糖产生菌的筛选鉴定及其促生改土作用[J]. 微生物学通报, 2023, 50(5):1941-1957. |
Li HF, Fang AR, Feng HX, et al. Screening and identification of extracellular polysaccharide-producing strain and the influence on soil quality and crop growth[J]. Microbiology China, 2023, 50(5):1941-1957. | |
[14] |
Marchus KA, Blankinship JC, Schimel JP. Environmental controls on extracellular polysaccharide accumulation in a California grassland soil[J]. Soil Biology and Biochemistry, 2018, 125:86-92.
doi: 10.1016/j.soilbio.2018.07.009 URL |
[15] |
周晴晴, 李理, 俞赟霞, 等. 高产胞外多糖嗜热链球菌的筛选及其直投式发酵剂的应用[J]. 食品与发酵工业, 2022, 48(5):81-88.
doi: 10.13995/j.cnki.11-1802/ts.028865 |
Zhou QQ, Li L, Yu YX, et al. Screening of Streptococcus thermo-philus with high-producing exopolysaccharide and application of directed vat set[J]. Food and Fermentation Industries, 2022, 48(5):81-88. | |
[16] |
李静, 李明源, 张甜, 等. 盐生植物解磷菌的筛选及促生效应研究[J]. 核农学报, 2023, 37(7):1470-1479.
doi: 10.11869/j.issn.1000-8551.2023.07.1470 |
Li J, Li MY, Zhang T, et al. Screening of phosphate-solubilizing bacteria from halophytes and their growth-promoting effects[J]. Journal of Nuclear Agriculture Sciences, 2023, 37(7):1470-1479. | |
[17] |
漫静, 唐波, 邓波, 等. 羊草根际促生菌的分离筛选及促生作用研究[J]. 草业学报, 2021, 30(1):59-71.
doi: 10.11686/cyxb2020321 |
Man J, Tang B, Deng B, et al. Isolation, screening and beneficial effects of plant growth-promoting rhizobacteria(PGPR)in the rhizosphere of Leymus chinensis[J]. Acta Prataculturae Sinica, 2021, 30(1):59-71. | |
[18] |
雷海英, 赵青松, 杨潇, 等. 苦参根际高效固氮菌的分离及复合菌肥对幼苗的促生效应[J]. 生物技术通报, 2020, 36(9):157-166.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0379 |
Lei HY, Zhao QS, Yang X, et al. Isolation of efficient nitrogen-fixing bacteria from the rhizosphere of Spohora flavescens and the growth-promoting effect of compound microbial fertilizer on seedlings[J]. Biotechnology Bulletin, 2020, 36(9):157-166. | |
[19] | 柴加丽, 姚拓. 高寒草甸多枝黄耆根际促生菌特性研究与鉴定[J]. 中国草地学报, 2022, 44(10):68-74. |
Chai JL, Yao T. Characteristics and identification of plant growth promoting rhizobacteria of Astragalus polycladus in alpine meadow[J]. Chinese Journal of Grassland, 2022, 44(10):68-74. | |
[20] | 许佳露, 张平, 李美芳, 等. 产铁载体菌株的分离、培养条件优化及初步应用[J]. 微生物学通报, 2022, 49(3):1004-1016. |
Xu JL, Zhang P, Li MF, et al. Isolation, culture optimization, and preliminary application of siderphore-producting strains[J]. Microbiology China, 2022, 49(3):1004-1016. | |
[21] | 陆娟, 周慧, 王贵生, 等. 一株胞外多糖产生菌的筛选鉴定及其多糖成分研究[J]. 天然产物研究与开发, 2020, 32(9):1484-1490. |
Lu J, Zhou H, Wang GS, et al. Screening and identification of an exopolysaccharide-producing strain and the investigation of its polysaccharide[J]. Natural Product Research and Development, 2020, 32(9):1484-1490. | |
[22] | 王彦平, 娄芳慧, 陈月英, 等. 苯酚-硫酸法测定紫山药多糖含量的条件优化[J]. 食品研究与开发, 2021, 42(4):170-174. |
Wang YP, Lou FH, Chen YY, et al. Optimization of analytical conditions for the determination of polysaccharides content in purple yam by phenol-sulfuric acid method[J]. Food Research and Development, 2021, 42(4):170-174. | |
[23] | 乔少婷, 解敏, 代安娜尔等. 嗜热链球菌MGB80-7所产胞外多糖的表型结构及其抗氧化活性[J]. 微生物学通报, 2022, 49(7):2686-2699. |
Qiao ST, Xie M, Daiannaer, et al. Phenotypic structure and antioxidant activity of exopolysaccharide produced by Streptococcus thermophilus MGB80-7[J]. Microbiology China, 2022, 49(7):2686-2699. | |
[24] |
郭英, 杨萍, 张丹雨. 野大豆多功能根际促生菌的筛选鉴定和促生效果研究[J]. 生物技术通报, 2018, 34(10):108-115.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0437 |
Guo Y, Yang P, Zhang DY, et al. Screening, identification and growth-promoting effect of multifunction rhizosphere growth-promoting strain of wild soybe[J]. Biotechnology Bulletin, 2018, 34(10):108-115. | |
[25] | 孟丽媛, 邱涵, 谢瑾, 等. 解磷菌、解钾菌和固氮菌的分离筛选与鉴定[J]. 生物灾害科学, 2022, 45(2):241-246. |
Meng LY, Qiu H, Xie J, et al. Isolation, screening and identification of phosphorus-solubilizing bacteria, potassium-solubilizing bacteria and nitrogen-fixing bacteria[J]. Biological Disaster Science, 2022, 45(2):241-246. | |
[26] |
Arnon DI. Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris[J]. Plant Physiology, 1949, 24(1):1-15.
doi: 10.1104/pp.24.1.1 pmid: 16654194 |
[27] | 郑楠, 邵阳, 罗敏, 等. 土壤团聚体制备方法对其稳定性及固碳潜力评价的影响研究[J]. 中国环境科学, 2022, 42(6):2821-2827. |
Zheng N, Shao Y, Luo M, et al. Effects of soil aggregate preparation methods on the stability and carbon sequestration potential evaluation[J]. China Environmental Science, 2022, 42(6):2821-2827. | |
[28] | 孙羽, 李晓燕, 陈杰, 等. 不同恢复措施对退化高寒草甸土壤团聚体稳定性及其有机碳分布的影响[J]. 中国草地学报, 2023, 45(3):60-67. |
Sun Y, Li XY, Chen J, et al. Effects of different restoration measures on soil aggregate stability and their organic carbon distribution in degraded alpine meadow[J]. Chinese Journal of Grassland, 2023, 45(3):60-67. | |
[29] |
Niu XG, Song LC, Xiao YN, et al. Drought-tolerant plant growth-promoting rhizobacteria associated with Foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress[J]. Frontiers in Microbiology, 2018, 8:2580.
doi: 10.3389/fmicb.2017.02580 URL |
[30] |
Ghosh D, Gupta A, Mohapatra S. A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in Arabidopsis thaliana[J]. World Journal of Microbiology and Biotechnology, 2019, 35(6):90.
doi: 10.1007/s11274-019-2659-0 |
[31] |
Yang A, Akhtar SS, Iqbal S, et al. Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation[J]. Functional Plant Biology, 2016, 43(7):632-642.
doi: 10.1071/FP15265 pmid: 32480492 |
[32] | 陈容钦, 李玲, 李晓云. 泛菌属内生菌YMR3提高花生植株对几种病虫害生物胁迫的抗性研究[J]. 中国生物防治学报, 2024, 40(1):71-79. |
Chen RQ, Li L, Li XY. Endophyte Pantoea YMR3 enhances the resistance of peanut plants to biological stresses of several diseases and insect pests[J]. Chinese Journal of Biological Control, 2024, 40(1): 71-79. | |
[33] |
杨静, 高泽鑫, 朱莉, 等. 产胞外多糖的苏云金芽孢杆菌的筛选及发酵工艺优化[J]. 食品与发酵工业, 2021, 47(24):124-131.
doi: 10.13995/j.cnki.11-1802/ts.027440 |
Yang J, Gao ZX, Zhu L, et al. Screening of an extracellular polysaccharides producing Bacillus thuringiensis strain and its fermentation optimization[J]. Food and Fermentation Industries, 2021, 47(24):124-131. | |
[34] | 王琪, 付强, 周巧丽, 等. 产胞外多糖罗汉果内生菌的筛选及其发酵条件优化[J]. 中国酿造, 2021, 40(7):89-93. |
Wang Q, Fu Q, Zhou QL, et al. Screening of extracellular polysaccharide-producing strains from endophytic bacteria of Siraitia grosvenorii and fermentation conditions optimization[J]. China Brewing, 2021, 40(7):89-93. | |
[35] | 乔新荣, 王泽夏, 叶润, 等. 猫爪草内生真菌胞外多糖的抗氧化活性及培养条件优化研究[J]. 粮食与油脂, 2022, 35(8):131-136. |
Qiao XR, Wang ZX, Ye R, et al. Study on antioxidant activity and optimization of fermentation conditions of extracellular polysaccharide produced by endophytic fungus radix Ranunculi ternati[J]. Cereals & Oils, 2022, 35(8):131-136. | |
[36] | 陈海燕, 李嘉雯, 李婷, 等. 高产胞外多糖嗜热链球菌的筛选及胞外多糖的结构分析[J]. 中国食品学报, 2021, 21(4):286-294. |
Chen HY, Li JW, Li T, et al. Selection of Streptococcus thermophilus for high extracellular polysaccharide production and structural analysis of extracellular polysaccharide[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(4):286-294. | |
[37] | 茹素龙, 赵永龙, 王紫薇, 等. 产胞外多糖菌株的分离鉴定及其功能研究[J]. 微生物学报, 2023, 63(11): 4315-4329. |
Ru SL, Zhao YL, Wang ZW, et al. Isolation, identification, and functional characterization of exopolysaccharide-producing strains[J]. Acta Microbiologica Sinica, 2023, 63(11):4315-4329. | |
[38] |
Han S, Delgado-Baquerizo M, Luo X, et al. Soil aggregate size-dependent relationships between microbial functional diversity and multifunctionality[J]. Soil Biology and Biochemistry, 2021, 154:108143.
doi: 10.1016/j.soilbio.2021.108143 URL |
[39] | 张文平, 李昆太, 黄林, 等. 产胞外多糖菌株的筛选及其对土壤团聚体的影响[J]. 江西农业大学学报, 2017, 39(4):772-779. |
Zhang WP, Li KT, Huang L, et al. Screening of exopolysaccharide-producing bacteria and their effects on aggregates in soil[J]. Acta Agriculturae Universitatis Jiangxiensis, 2017, 39(4):772-779. | |
[40] | 刘帅, 赵西宁, 李钊, 等. 不同改良剂对旱地苹果园壤土团聚体和水分的影响[J]. 水土保持学报, 2021, 35(2):193-199. |
Liu S, Zhao XN, Li Z, et al. Effect of different amendments on aggregate and water content of loam soil in dryland apple orchard[J]. Journal of Soil and Water Conservation, 2021, 35(2):193-199. | |
[41] |
Le Gall S, Bérard A, Page D, et al. Increased exopolysaccharide production and microbial activity affect soil water retention and field performance of tomato under water deficit[J]. Rhizosphere, 2021, 19:100408.
doi: 10.1016/j.rhisph.2021.100408 URL |
[1] | 涂晓媛, 褚路路, 王冕, 陈炳智, 江玉姬. 珊瑚状猴头菇多糖的提取及其体外抗氧化活性分析[J]. 生物技术通报, 2023, 39(12): 276-286. |
[2] | 张秀民, 马绍英, 杨洁, 包金玉, 张晓玲, 田鹏, 路亚琦, 李胜. 以次生代谢物产量为目标的西兰花毛状根培养技术体系优化[J]. 生物技术通报, 2021, 37(8): 75-84. |
[3] | 迪力热巴·阿不都肉苏力, 穆耶赛尔·奥斯曼, 祖力胡玛尔·肉孜, 马勤, 雷瑞峰, 安登第. 盐碱土壤微生物多样性与生物改良研究进展[J]. 生物技术通报, 2021, 37(10): 225-233. |
[4] | 罗素亚, 郑豆豆, 何广正, 张琳琳, 徐书景, 鞠建松. 响应面法优化脯氨酸羟化酶转化反应工艺条件[J]. 生物技术通报, 2020, 36(6): 157-164. |
[5] | 王玉杰, 王湘君. 响应面法优化改性香蕉皮对Pb2+的吸附研究[J]. 生物技术通报, 2019, 35(4): 188-194. |
[6] | 麻金金, 葛蓓孛, 施李鸣, 刘炳花, 韦秋合, 张克诚. 玫瑰黄链霉菌NKZ-259发酵培养基的优化[J]. 生物技术通报, 2019, 35(2): 85-92. |
[7] | 左振宇, 喻放, 黄艳鸿, 王家怡, 李凌凌. 蚕蛹超声辅助常温脱脂工艺条件优化[J]. 生物技术通报, 2016, 32(2): 158-164. |
[8] | 程知庆, 沈和定, 姚理想, 刁亚, 刘宸. 瘤背石磺多糖提取工艺优化及其体外抗氧化活性评价[J]. 生物技术通报, 2015, 31(8): 186-192. |
[9] | 王春明, 钟超, 王凤学, 黄凡, 贾红华, 韦萍, 赵印. 一株Bacillus sublitis JH-1发酵产木聚糖酶培养基的响应面优化[J]. 生物技术通报, 2015, 31(2): 179-186. |
[10] | 张锐. 红曲霉液态发酵生产红曲色素的工艺优化[J]. 生物技术通报, 2015, 31(2): 187-195. |
[11] | 梁昌聪, 郭立佳, 刘磊, 张建华, 杨腊英, 王国芬, 黄俊生. 响应面法优化解淀粉芽孢杆菌C101发酵培养基[J]. 生物技术通报, 2014, 0(8): 169-174. |
[12] | 龚国利,王娜,刘丽丽. 响应面法优化纤维堆囊菌SoF5-76 产埃博霉素B发酵培养基[J]. 生物技术通报, 2014, 0(1): 171-176. |
[13] | 张晓梅, 李新生, 许正宏. 产3-羟基丙酸重组大肠杆菌JM109的构建及发酵条件优化[J]. 生物技术通报, 2013, 0(6): 200-208. |
[14] | 胡小媛, 滕达, 张勇, 毛若雨, 王秀敏, 黄建忠, 王建华. 防腹泻布拉酵母培养条件的响应面法优化[J]. 生物技术通报, 2013, 0(6): 194-199. |
[15] | 郭端强, 李轶徽, 陈艳艳, 单林娜. 响应面法优化降解有机氮细菌N24的种子培养基[J]. 生物技术通报, 2013, 0(12): 167-172. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||