生物技术通报 ›› 2024, Vol. 40 ›› Issue (4): 189-202.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1081
王佳玮(), 李晨, 刘建利(), 周世杰, 易嘉敏, 杨谨源, 康鹏
收稿日期:
2023-11-17
出版日期:
2024-04-26
发布日期:
2024-04-30
通讯作者:
刘建利,男,博士,教授,研究方向:微生物与植物互作;E-mail: ljl7523@126.com作者简介:
王佳玮,男,硕士研究生,研究方向:微生物与植物互作;E-mail: wjw17901402@163.com
基金资助:
WANG Jia-wei(), LI Chen, LIU Jian-li(), ZHOU Shi-jie, YI Jia-min, YANG Jin-yuan, KANG Peng
Received:
2023-11-17
Published:
2024-04-26
Online:
2024-04-30
摘要:
【目的】植物内生真菌是一类重要的微生物资源,对植物生长具有积极的影响。接种方式是内生真菌发挥促生效果的关键环节。探究不同接种方式对内生真菌促生能力的影响,为内生真菌应用提供参考。【方法】以课题组前期从荒漠植物根内生真菌中筛选能促进青贮玉米生长的不同种属的4株内生真菌和印度梨形孢(PI)为供试菌株,采用菌丝片段悬液灌根和菌丝团包根两种方式分别将5株内生真菌接种至青贮玉米盆栽幼苗,30 d后测定接种青贮玉米幼苗的生物学性状,比较不同接种方式对青贮玉米生长的影响。【结果】接种方式对5株内生真菌在青贮玉米幼苗根内菌丝侵染率和幼苗基茎粗均无显著影响,但其他17个与青贮玉米生长相关的性状受接种方式影响显著,主成分分析结果显示5株内生真菌采用菌丝片段悬液灌根方式促生效果均显著优于菌丝团包根,以印度梨形孢和菌株Tm36的两种接种方式得分差值最大。接种印度梨形孢和菌株Tm36的青贮玉米幼苗株高、地上鲜重、地上干重、平均叶面积、叶相对含水量、根鲜重、根表面积、根体积、全株鲜重和全株干重等10个性状在两种接种方式间均有显著差异,其中差异最大的株高、地上鲜重、平均叶面积、根鲜重和全株鲜重等5个指标,菌丝片段悬液灌根接种印度梨形孢增长率是菌丝团包根接种的7.78倍、3.74倍、15.97倍、7.93倍和5.36倍,接种菌株Tm36是8.65倍、4.33倍、11.18倍、16.58倍和7.53倍。【结论】接种方式显著影响内生真菌促生效果,菌丝片段悬液灌根接种方式对青贮玉米幼苗促进生长效果优于菌丝团包根接种方式,推荐使用菌丝片段悬液灌根法。
王佳玮, 李晨, 刘建利, 周世杰, 易嘉敏, 杨谨源, 康鹏. 内生真菌接种方式对青贮玉米幼苗生长的影响[J]. 生物技术通报, 2024, 40(4): 189-202.
WANG Jia-wei, LI Chen, LIU Jian-li, ZHOU Shi-jie, YI Jia-min, YANG Jin-yuan, KANG Peng. Effects of Endophytic Fungal Inoculation on the Seedling Growth of Silage Maize[J]. Biotechnology Bulletin, 2024, 40(4): 189-202.
图1 五株内生真菌对青贮玉米幼苗根系侵染显微图 W:菌丝团包根接种;I:菌丝片段悬液灌根接种;CK为对照组;PI、Pm31、Tm36、Cs46、Tm02为接种内生真菌菌株;下同
Fig. 1 Microscopic images of five endophytic fungi on the root infection of silage maize seedlings W: The inoculation method of mycelium tubule root. I: The inoculation method of mycelium fragment suspension root. CK is the control group. PI, Pm31, Tm36, Cs46 and Tm02 are the strain names. The same below
图4 五株内生真菌对青贮玉米幼苗地上部分的影响 不同小写字母代表差异显著(P<0.05),下同
Fig. 4 Effects of five endophytic fungi on the aboveground parts of silage maize seedlings The significance level represented by different lowercase letters was P < 0.05, the same below
指标 Index | 株高Plant height | 基茎粗Basal stem thickness | 地上鲜重Aboveground fresh weight | 地上干重Above ground dry weight | 地上干物质含量Above-ground dry matter content | 平均叶面积 Mean leaf area | 叶相对含水量Leaf relative water content | 根鲜重 Fresh root weight | 根干重 Root dry weight | 根干物质含量Root dry matter content | 根长 Root length | 根表面积 Root surface area | 根体积 Root volume | 比根长 Specific root length | 全株鲜重 Fresh weight of whole plant | 全株干重 Dry weight of whole plant | 全株干物质含量 Dry matter content of whole plant | 根冠比 Root-shoot ratio |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
株高 Plant height | 1 | |||||||||||||||||
基茎粗Basal stem thickness | 0.803** | 1 | ||||||||||||||||
地上鲜重 Aboveground fresh weight | 0.879** | 0.867** | 1 | |||||||||||||||
地上干重 Above ground dry weight | 0.782** | 0.666* | 0.915** | 1 | ||||||||||||||
地上干物质含量 Above-ground dry matter content | 0.666* | 0.426 | 0.764* | 0.951** | 1 | |||||||||||||
平均叶面积 Mean leaf area | 0.727* | 0.616 | 0.807** | 0.812** | 0.703* | 1 | ||||||||||||
叶相对含水量 Leaf relative water content | -0.748* | -0.619 | -0.725* | -0.787** | -0.718* | -0.751* | 1 | |||||||||||
根鲜重 Fresh root weight | 0.801** | 0.735* | 0.873** | 0.914** | 0.813** | 0.908** | -0.854** | 1 | ||||||||||
根干重 Root dry weight | 0.539 | 0.367 | 0.583 | 0.436 | 0.348 | 0.53 | -0.095 | 0.331 | 1 | |||||||||
根干物质含量 Root dry matter content | -0.244 | -0.342 | -0.286 | -0.451 | -0.434 | -0.372 | 0.681* | -0.61 | 0.543 | 1 | ||||||||
根长 Root length | 0.707* | 0.414 | 0.659* | 0.659* | 0.631 | 0.815** | -0.447 | 0.646* | 0.766** | 0.063 | 1 | |||||||
根表面积 Root surface area | 0.790** | 0.579 | 0.823** | 0.822** | 0.756* | 0.930** | -0.642* | 0.840** | 0.685* | -0.178 | 0.938** | 1 | ||||||
根体积 Root volume | 0.827** | 0.754* | 0.926** | 0.906** | 0.779** | 0.938** | -0.831** | 0.962** | 0.511 | -0.429 | 0.711* | 0.898** | 1 | |||||
比根长 Specific root length | 0.482 | 0.307 | 0.32 | 0.465 | 0.51 | 0.495 | -0.579 | 0.587 | -0.172 | -0.666* | 0.475 | 0.515 | 0.435 | 1 | ||||
全株鲜重 Fresh weight of whole plant | 0.855** | 0.822** | 0.955** | 0.944** | 0.817** | 0.889** | -0.831** | 0.977** | 0.432 | -0.506 | 0.662* | 0.854** | 0.975** | 0.503 | 1 | |||
全株干重 Dry weight of whole plant | 0.806** | 0.644* | 0.925** | 0.925** | 0.853** | 0.823** | -0.622 | 0.814** | 0.745* | -0.102 | 0.807** | 0.896** | 0.886** | 0.265 | 0.881** | 1 | ||
全株干物质含量 Dry matter content of whole plant | 0.083 | -0.205 | 0.126 | 0.11 | 0.198 | 0.034 | 0.309 | -0.163 | 0.762* | 0.781** | 0.46 | 0.29 | 0.009 | -0.37 | -0.061 | 0.41 | 1 | |
根冠比 Root-shoot ratio | -0.668* | -0.595 | -0.750* | -0.837** | -0.806** | -0.54 | 0.821** | -0.767** | -0.001 | 0.675* | -0.249 | -0.483 | -0.706* | -0.461 | -0.791** | -0.628 | 0.214 | 1 |
表1 内生真菌接种青贮玉米幼苗各性状指标的相关性
Table 1 Correlation analysis of trait indexes of silage maize seedling inoculated with endoplytic fungi
指标 Index | 株高Plant height | 基茎粗Basal stem thickness | 地上鲜重Aboveground fresh weight | 地上干重Above ground dry weight | 地上干物质含量Above-ground dry matter content | 平均叶面积 Mean leaf area | 叶相对含水量Leaf relative water content | 根鲜重 Fresh root weight | 根干重 Root dry weight | 根干物质含量Root dry matter content | 根长 Root length | 根表面积 Root surface area | 根体积 Root volume | 比根长 Specific root length | 全株鲜重 Fresh weight of whole plant | 全株干重 Dry weight of whole plant | 全株干物质含量 Dry matter content of whole plant | 根冠比 Root-shoot ratio |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
株高 Plant height | 1 | |||||||||||||||||
基茎粗Basal stem thickness | 0.803** | 1 | ||||||||||||||||
地上鲜重 Aboveground fresh weight | 0.879** | 0.867** | 1 | |||||||||||||||
地上干重 Above ground dry weight | 0.782** | 0.666* | 0.915** | 1 | ||||||||||||||
地上干物质含量 Above-ground dry matter content | 0.666* | 0.426 | 0.764* | 0.951** | 1 | |||||||||||||
平均叶面积 Mean leaf area | 0.727* | 0.616 | 0.807** | 0.812** | 0.703* | 1 | ||||||||||||
叶相对含水量 Leaf relative water content | -0.748* | -0.619 | -0.725* | -0.787** | -0.718* | -0.751* | 1 | |||||||||||
根鲜重 Fresh root weight | 0.801** | 0.735* | 0.873** | 0.914** | 0.813** | 0.908** | -0.854** | 1 | ||||||||||
根干重 Root dry weight | 0.539 | 0.367 | 0.583 | 0.436 | 0.348 | 0.53 | -0.095 | 0.331 | 1 | |||||||||
根干物质含量 Root dry matter content | -0.244 | -0.342 | -0.286 | -0.451 | -0.434 | -0.372 | 0.681* | -0.61 | 0.543 | 1 | ||||||||
根长 Root length | 0.707* | 0.414 | 0.659* | 0.659* | 0.631 | 0.815** | -0.447 | 0.646* | 0.766** | 0.063 | 1 | |||||||
根表面积 Root surface area | 0.790** | 0.579 | 0.823** | 0.822** | 0.756* | 0.930** | -0.642* | 0.840** | 0.685* | -0.178 | 0.938** | 1 | ||||||
根体积 Root volume | 0.827** | 0.754* | 0.926** | 0.906** | 0.779** | 0.938** | -0.831** | 0.962** | 0.511 | -0.429 | 0.711* | 0.898** | 1 | |||||
比根长 Specific root length | 0.482 | 0.307 | 0.32 | 0.465 | 0.51 | 0.495 | -0.579 | 0.587 | -0.172 | -0.666* | 0.475 | 0.515 | 0.435 | 1 | ||||
全株鲜重 Fresh weight of whole plant | 0.855** | 0.822** | 0.955** | 0.944** | 0.817** | 0.889** | -0.831** | 0.977** | 0.432 | -0.506 | 0.662* | 0.854** | 0.975** | 0.503 | 1 | |||
全株干重 Dry weight of whole plant | 0.806** | 0.644* | 0.925** | 0.925** | 0.853** | 0.823** | -0.622 | 0.814** | 0.745* | -0.102 | 0.807** | 0.896** | 0.886** | 0.265 | 0.881** | 1 | ||
全株干物质含量 Dry matter content of whole plant | 0.083 | -0.205 | 0.126 | 0.11 | 0.198 | 0.034 | 0.309 | -0.163 | 0.762* | 0.781** | 0.46 | 0.29 | 0.009 | -0.37 | -0.061 | 0.41 | 1 | |
根冠比 Root-shoot ratio | -0.668* | -0.595 | -0.750* | -0.837** | -0.806** | -0.54 | 0.821** | -0.767** | -0.001 | 0.675* | -0.249 | -0.483 | -0.706* | -0.461 | -0.791** | -0.628 | 0.214 | 1 |
指标Index | 主成分载荷Principal component load | ||
---|---|---|---|
F1 | F2 | F3 | |
株高 Plant height | 0.257 | 0.043 | -0.115 |
基茎粗 Basal stem thickness | 0.220 | -0.055 | -0.448 |
地上鲜重 Above-ground fresh weight | 0.274 | 0.059 | -0.277 |
地上干重 Above-ground dry weight | 0.278 | -0.008 | -0.043 |
地上干物质含量 Above-ground dry matter content | 0.250 | -0.008 | 0.145 |
平均叶面积 Mean leaf area | 0.264 | 0.037 | 0.171 |
叶相对含水量 Leaf relative water content | -0.243 | 0.210 | 0.013 |
根鲜重 Fresh root weight | 0.279 | -0.104 | 0.021 |
根干重 Root dry weight | 0.145 | 0.462 | -0.080 |
根干物质含量 Root dry matter content | -0.127 | 0.477 | -0.096 |
根长 Root length | 0.220 | 0.255 | 0.399 |
根表面积 Root surface area | 0.264 | 0.152 | 0.249 |
根体积 Root volume | 0.282 | 0.003 | -0.062 |
比根长 Specific root length | 0.157 | -0.253 | 0.587 |
全株鲜重 Fresh weight of whole plant | 0.286 | -0.047 | -0.108 |
全株干重 Dry weight of whole plant | 0.267 | 0.190 | -0.072 |
全株干物质含量 Dry matter content of whole plant | 0.015 | 0.505 | 0.084 |
根冠比 Root-shoot ratio | -0.224 | 0.221 | 0.215 |
主成分特征值 Eigenvalue of principal component | 11.856 | 3.399 | 1.045 |
成分贡献率 Component contribution rate/% | 65.866 | 18.884 | 5.807 |
累计贡献率 Cumulative contribution rate/% | 65.866 | 84.750 | 90.557 |
表2 各指标增长率主成分特征值、方差贡献率、累计贡献率和成分载荷矩阵
Table 2 Principal component eigenvalue, variance contribution rate, cumulative contribution rate and component load matrix of each index growth rate
指标Index | 主成分载荷Principal component load | ||
---|---|---|---|
F1 | F2 | F3 | |
株高 Plant height | 0.257 | 0.043 | -0.115 |
基茎粗 Basal stem thickness | 0.220 | -0.055 | -0.448 |
地上鲜重 Above-ground fresh weight | 0.274 | 0.059 | -0.277 |
地上干重 Above-ground dry weight | 0.278 | -0.008 | -0.043 |
地上干物质含量 Above-ground dry matter content | 0.250 | -0.008 | 0.145 |
平均叶面积 Mean leaf area | 0.264 | 0.037 | 0.171 |
叶相对含水量 Leaf relative water content | -0.243 | 0.210 | 0.013 |
根鲜重 Fresh root weight | 0.279 | -0.104 | 0.021 |
根干重 Root dry weight | 0.145 | 0.462 | -0.080 |
根干物质含量 Root dry matter content | -0.127 | 0.477 | -0.096 |
根长 Root length | 0.220 | 0.255 | 0.399 |
根表面积 Root surface area | 0.264 | 0.152 | 0.249 |
根体积 Root volume | 0.282 | 0.003 | -0.062 |
比根长 Specific root length | 0.157 | -0.253 | 0.587 |
全株鲜重 Fresh weight of whole plant | 0.286 | -0.047 | -0.108 |
全株干重 Dry weight of whole plant | 0.267 | 0.190 | -0.072 |
全株干物质含量 Dry matter content of whole plant | 0.015 | 0.505 | 0.084 |
根冠比 Root-shoot ratio | -0.224 | 0.221 | 0.215 |
主成分特征值 Eigenvalue of principal component | 11.856 | 3.399 | 1.045 |
成分贡献率 Component contribution rate/% | 65.866 | 18.884 | 5.807 |
累计贡献率 Cumulative contribution rate/% | 65.866 | 84.750 | 90.557 |
处理 Treatment | F1主成分得分 F1 principal component score | F2主成分得分 F2 principal component score | F3主成分得分 F3 principal component score | 主成分综合得分 Principal component comprehensive score | 排名 Rank |
---|---|---|---|---|---|
I-PI | 4.172 | -0.090 | -0.323 | 2.576 | 1 |
I-Pm31 | 4.071 | -0.350 | 0.381 | 2.504 | 2 |
I-Tm36 | 3.045 | -0.018 | 0.965 | 1.959 | 3 |
I-Tm02 | 2.332 | -0.789 | -1.362 | 1.231 | 4 |
I-Cs46 | 1.346 | -1.978 | 0.312 | 0.487 | 5 |
W-Pm31 | -0.821 | 3.144 | 0.542 | 0.111 | 6 |
W-Cs46 | -1.705 | 2.893 | -1.573 | -0.612 | 7 |
W-Tm02 | -3.495 | 0.120 | 1.646 | -2.069 | 8 |
W-PI | -4.030 | -0.170 | 0.260 | -2.540 | 9 |
W-Tm36 | -4.916 | -2.762 | -0.848 | -3.647 | 10 |
表3 五株内生真菌两种方式接种青贮玉米幼苗效果的主成分得分、综合得分及排名
Table 3 Principal component scores, comprehensive scores and rankings of the effects of five endophytic fungi on silage maize seedlings inoculated in two ways
处理 Treatment | F1主成分得分 F1 principal component score | F2主成分得分 F2 principal component score | F3主成分得分 F3 principal component score | 主成分综合得分 Principal component comprehensive score | 排名 Rank |
---|---|---|---|---|---|
I-PI | 4.172 | -0.090 | -0.323 | 2.576 | 1 |
I-Pm31 | 4.071 | -0.350 | 0.381 | 2.504 | 2 |
I-Tm36 | 3.045 | -0.018 | 0.965 | 1.959 | 3 |
I-Tm02 | 2.332 | -0.789 | -1.362 | 1.231 | 4 |
I-Cs46 | 1.346 | -1.978 | 0.312 | 0.487 | 5 |
W-Pm31 | -0.821 | 3.144 | 0.542 | 0.111 | 6 |
W-Cs46 | -1.705 | 2.893 | -1.573 | -0.612 | 7 |
W-Tm02 | -3.495 | 0.120 | 1.646 | -2.069 | 8 |
W-PI | -4.030 | -0.170 | 0.260 | -2.540 | 9 |
W-Tm36 | -4.916 | -2.762 | -0.848 | -3.647 | 10 |
菌株 Strain | 主成分综合得分差值 Principal component composite score difference |
---|---|
Tm36 | 5.606 |
PI | 5.116 |
Tm02 | 3.300 |
Pm31 | 2.615 |
Cs46 | 1.099 |
表4 五株内生真菌两种方式接种青贮玉米幼苗效果的主成分综合得分差值
Table 4 Difference of principal component comprehensive scores of five endophytic fungi inoculated silage maize seedlings in two ways
菌株 Strain | 主成分综合得分差值 Principal component composite score difference |
---|---|
Tm36 | 5.606 |
PI | 5.116 |
Tm02 | 3.300 |
Pm31 | 2.615 |
Cs46 | 1.099 |
[1] | 荆元芳, 吴连杰, 马传洋, 等. 不同浓度和形态磷处理下内生真菌感染对高羊茅的影响[J]. 生态学报, 2014, 34(13): 3576-3583. |
Jing YF, Wu LJ, Ma CY, et al. Effects of endophyte infection on tall fescue in different phosphorus levels and forms[J]. Acta Ecol Sin, 2014, 34(13): 3576-3583. | |
[2] | 王志伟, 纪燕玲, 陈永敢. 植物内生菌研究及其科学意义[J]. 微生物学通报, 2015, 42(2): 349-363. |
Wang ZW, Ji YL, Chen YG. Studies and biological significances of plant endophytes[J]. Microbiol China, 2015, 42(2): 349-363. | |
[3] |
Dubey A, Malla MA, Kumar A, et al. Plants endophytes: unveiling hidden agenda for bioprospecting toward sustainable agriculture[J]. Crit Rev Biotechnol, 2020, 40(8): 1210-1231.
doi: 10.1080/07388551.2020.1808584 URL |
[4] | 彭靓, 陈梦, 廖小锋, 等. 米槁根部内生促生真菌筛选及其促生特性研究[J]. 西北农林科技大学学报: 自然科学版, 2023, 51(9): 84-91. |
Peng L, Chen M, Liao XF, et al. Screening and characteristics of endophytic growth-promoting fungi in roots of Cinnamomum migao[J]. J Northwest A F Univ Nat Sci Ed, 2023, 51(9): 84-91. | |
[5] |
张昊, 刘苗苗, 刘晓娜, 等. 内生菌影响药用植物产生药理活性化合物的研究进展[J]. 生物技术通报, 2022, 38(8): 41-51.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1487 |
Zhang H, Liu MM, Liu XN, et al. Impact of endophytic microorganisms on the pharmaco-active compounds production in medicinal plants: a review[J]. Biotechnol Bull, 2022, 38(8): 41-51. | |
[6] |
李春杰, 姚祥, 南志标. 醉马草内生真菌共生体研究进展[J]. 植物生态学报, 2018, 42(8): 793-805.
doi: 10.17521/cjpe.2018.0001 |
Li CJ, Yao X, Nan ZB. Advances in research of Achnatherum inebrians-Epichlo endophyte symbionts[J]. Chin J Plant Ecol, 2018, 42(8): 793-805.
doi: 10.17521/cjpe.2018.0001 URL |
|
[7] |
Dolatabad HK, Javan-Nikkhah M, Shier WT. Evaluation of antifungal, phosphate solubilisation, and siderophore and chitinase release activities of endophytic fungi from Pistacia vera[J]. Mycol Prog, 2017, 16(8): 777-790.
doi: 10.1007/s11557-017-1315-z URL |
[8] |
Adeleke BS, Babalola OO, Glick BR. Plant growth-promoting root-colonizing bacterial endophytes[J]. Rhizosphere, 2021, 20: 100433.
doi: 10.1016/j.rhisph.2021.100433 URL |
[9] |
李秀璋, 姚祥, 李春杰, 等. 禾草内生真菌作为生防因子的潜力分析[J]. 植物生态学报, 2015, 39(6): 621-634.
doi: 10.17521/cjpe.2015.0060 |
Li XZ, Yao X, Li CJ, et al. Potential analysis of grass endophytes Neotyphodium as biocontrol agents[J]. Chin J Plant Ecol, 2015, 39(6): 621-634.
doi: 10.17521/cjpe.2015.0060 URL |
|
[10] |
石新建, 张靖歆, 秦天姿, 等. 内生真菌感染对宿主羽茅及邻生植物抗病性的影响[J]. 植物生态学报, 2021, 45(8): 860-869.
doi: 10.17521/cjpe.2021.0132 |
Shi XJ, Zhang JX, Qin TZ, et al. Effects of endophyte infection on fungal disease resistance of Achnatherum sibiricum and non-symbiotic neighbours[J]. Chin J Plant Ecol, 2021, 45(8): 860-869.
doi: 10.17521/cjpe.2021.0132 URL |
|
[11] |
隋丽, 万婷玉, 路杨, 等. 内生真菌对植物促生、抗逆作用研究进展[J]. 中国生物防治学报, 2021, 37(6): 1325-1331.
doi: 10.16409/j.cnki.2095-039x.2021.06.024 |
Sui L, Wan TY, Lu Y, et al. Review of fungal endophytes on plant growth promotion and stress resistance[J]. Chin J Biol Contr, 2021, 37(6): 1325-1331. | |
[12] | Santos M, Cesanelli I, Diánez F, et al. Advances in the role of dark septate endophytes in the plant resistance to abiotic and biotic stresses[J]. J Fungi, 2021, 7(11): 939. |
[13] | 杜衎, 高德民, 孙燕, 等. 北柴胡内生真菌分离鉴定及其生防促生活性分析[J]. 山东农业科学, 2023, 55(6): 85-94. |
Du K, Gao DM, Sun Y, et al. Isolation and identification of endophytic fungi from Bupleurum chinensis DC. and analysis of their biocontrol and growth-promoting activity[J]. Shandong Agric Sci, 2023, 55(6): 85-94. | |
[14] | 毕银丽, 宋雅宁, 白雪蕊, 等. DSE及其代谢物对紫花苜蓿促生作用及其矿区生态修复潜力[J]. 煤炭科学技术, 2023, 51(12):90-99. |
Bi YL, Song YN, Bai XR, et al. DSE and its metabolites on Medicago sativa growth promotion and its potential for ecological restoration in mining areas[J]. Coal Sci Technol, 2023, 51(12):90-99. | |
[15] | 崔雨虹, 白云, 曹娜, 等. 球孢白僵菌不同施用方式对玉米促生作用的研究[J]. 热带作物学报, 2017, 38(2): 206-212. |
Cui YH, Bai Y, Cao N, et al. Effects of Beauveria bassiana inoculated with different methods on maize as growth promoter[J]. Chin J Trop Crops, 2017, 38(2): 206-212. | |
[16] | 钱寅森, 武启迪, 季中亚, 等. 我国青贮玉米生产与加工研究进展[J]. 江苏农业科学, 2021, 49(23): 41-46. |
Qian YS, Wu QD, Ji ZY, et al. Research progress of silage corn production and processing[J]. Jiangsu Agric Sci, 2021, 49(23): 41-46. | |
[17] | 王斐, 王克雄, 关耀兵, 等. 宁夏南部山区不同生态类型条件下青贮玉米产量和品质的差异研究[J]. 饲料研究, 2022, 45(20): 79-82. |
Wang F, Wang KX, Guan YB, et al. Study on yield and quality difference of silage maize under different ecological types in southern mountainous area of Ningxia[J]. Feed Res, 2022, 45(20): 79-82. | |
[18] | 曹立娟, 张顺香, 姚亚妮, 等. 14个青贮玉米品种在宁夏雨养区的生产性能和营养价值综合评价[J]. 草业科学, 2022, 39(5): 977-987. |
Cao LJ, Zhang SX, Yao YN, et al. Comprehensive evaluation of the production performance and nutritional value of 14 silage maize varieties in rainfed areas of Ningxia[J]. Pratacultural Sci, 2022, 39(5): 977-987. | |
[19] |
侯湃, 陈彩锦, 张静妮, 等. 宁夏固原地区不同青贮玉米品种生产性能及营养品质研究[J]. 草地学报, 2021, 29(10): 2346-2354.
doi: 10.11733/j.issn.1007-0435.2021.10.027 |
Hou P, Chen CJ, Zhang JN, et al. Study on production performance and nutritional quality of different silage maize in Guyuan area of Ningxia[J]. Acta Agrestia Sin, 2021, 29(10): 2346-2354. | |
[20] | 王英娜, 王佳玮, 夏依婷, 等. 内生真菌对青贮玉米幼苗抗旱性的影响[J]. 干旱地区农业研究, 2022, 40(6): 45-55, 71. |
Wang YN, Wang JW, Xia YT, et al. Effects of endophytic fungi on drought stresstolerance of silage maize seedlings[J]. Agric Res Arid Areas, 2022, 40(6): 45-55, 71. | |
[21] | 南志标, 李春杰. 禾草-内生真菌共生体在草地农业系统中的作用[J]. 生态学报, 2004, 24(3): 605-616. |
Nan ZB, Li CJ. Roles of the grass-Neotyphodium association in pastoral agriculture systems[J]. Acta Ecol Sin, 2004, 24(3): 605-616. | |
[22] | 崔振, 李彦忠. 豆科植物疯草中内生真菌及其作用[J]. 草业科学, 2014, 31(9): 1686-1695. |
Cui Z, Li YZ. An overview of study on legume plant locoweed endophyte[J]. Pratacultural Sci, 2014, 31(9): 1686-1695. | |
[23] |
李春杰, 郎鸣晓, 陈振江, 等. 禾草-内生真菌人工接种技术研究进展[J]. 草业学报, 2021, 30(7): 179-189.
doi: 10.11686/cyxb2020267 |
Li CJ, Lang MX, Chen ZJ, et al. Advances in artificial inoculation technology for grass-endophytic fungi[J]. Acta Prataculturae Sin, 2021, 30(7): 179-189. | |
[24] | 李春杰, 王正凤, 陈泰祥, 等. 利用禾草内生真菌创制大麦新种质[J]. 科学通报, 2021, 66(20): 2608-2617. |
Li CJ, Wang ZF, Chen TX, et al. Creation of novel barley germplasm using an Epichloë endophyte[J]. Chin Sci Bull, 2021, 66(20): 2608-2617.
doi: 10.1360/TB-2020-1587 URL |
|
[25] | 张晓蓉, 李涛, 王超君, 等. 深色有隔内生真菌甘瓶霉对番茄抗枯萎病的作用[J]. 中国生物防治学报, 2017, 33(3): 394-400. |
Zhang XR, Li T, Wang CJ, et al. Enhanced tolerance of tomatoes against Fusarium oxysporum by inoculation with dark septate endophyte[J]. Chin J Biol Contr, 2017, 33(3): 394-400. | |
[26] | 刘燕霞, 龙俊萌, 王静茹, 等. 五种漠境深色有隔内生真菌对小麦促生抗旱效应研究[J]. 中国科学: 生命科学, 2021, 51(9): 1339-1349. |
Liu YX, Long JM, Wang JR, et al. Effects of five dark septate endophytes isolated from deserts on growing wheat under drought stress[J]. Sci Sin Vitae, 2021, 51(9): 1339-1349.
doi: 10.1360/SSV-2021-0313 URL |
|
[27] | 蓝桃菊, 陈艳露, 黄诚梅, 等. 大石围天坑群深色有隔内生真菌(DSE)群落组成及其对先锋植物抗旱能力的影响[J]. 微生物学杂志, 2017, 37(2): 26-34. |
Lan TJ, Chen YL, Huang CM, et al. Community constituent of dark septate endophytic fungi in Dashiwei doline group and their effects on pioneer plants’ drought resistance capability[J]. J Microbiol, 2017, 37(2): 26-34. | |
[28] | 刘范, 王斌, 伍俊为, 等. 印度梨形孢和FocTR4对香蕉根系微生物群落结构的影响[J]. 福建农林大学学报: 自然科学版, 2022, 51(1): 53-61. |
Liu F, Wang B, Wu JW, et al. Effects of Serendipita indica and FocTR4 on the microorganism community structure in banana roots[J]. J Fujian Agric For Univ Nat Sci Ed, 2022, 51(1): 53-61. | |
[29] |
吴楚, 税蓉, 韦巧, 等. 根内生真菌印度梨形孢侵染对黑麦草气体交换和生长发育的影响[J]. 草地学报, 2018, 26(3): 786-790.
doi: 10.11733/j.issn.1007-0435.2018.03.035 |
Wu C, Shui R, Wei Q, et al. Effects of colonization of endophytic fungus Piriformospora indica on gas exchange and growth and development of Lolium perenne[J]. Acta Agrestia Sin, 2018, 26(3): 786-790. | |
[30] | 王铭蕊. 云南个旧黄茅山尾矿区两种复垦植物根内DSE菌株功能多样性研究[D]. 昆明: 云南大学, 2019. |
Wang MR. Multi-functions of dark septate endophytes(DSE)colonizing the roots of two key reclaimed plants in Huangmaoshan tailing ponds, Gejiu, southwest China[D]. Kunming: Yunnan University, 2019. | |
[31] | 张波, 王宏伟, 肖逸, 等. 浸种及接种内生真菌对茅苍术种子发芽与幼苗生长的影响[J]. 江苏农业科学, 2012, 40(9): 227-230. |
Zhang B, Wang HW, Xiao Y, et al. Effects of soaking seeds and inoculating endophytic fungi on seed germination and seedling growth of Atractylodes lancea[J]. Jiangsu Agric Sci, 2012, 40(9): 227-230. | |
[32] | 毕银丽, 王茁优, 柯增鸣. 叶面涂抹DSE菌液对蛋白桑生长发育影响及其生态修复前景[J]. 煤田地质与勘探, 2023, 51(2): 187-194. |
Bi YL, Wang ZY, Ke ZM. Effect of foliar application of DSE fungal solution on growth of Morus alba and its prospects of ecological restoration application[J]. Coal Geol Explor, 2023, 51(2): 187-194. | |
[33] |
陈保冬, 于萌, 郝志鹏, 等. 丛枝菌根真菌应用技术研究进展[J]. 应用生态学报, 2019, 30(3): 1035-1046.
doi: 10.13287/j.1001-9332.201903.037 |
Chen BD, Yu M, Hao ZP, et al. Research progress in arbuscular mycorrhizal technology[J]. Chin J Appl Ecol, 2019, 30(3): 1035-1046.
doi: 10.13287/j.1001-9332.201903.037 |
|
[34] |
Krak K, Janoušková M, Caklová P, et al. Intraradical dynamics of two coexisting isolates of the arbuscular mycorrhizal fungus Glomus intraradices sensu lato as estimated by real-time PCR of mitochondrial DNA[J]. Appl Environ Microbiol, 2012, 78(10): 3630-3637.
doi: 10.1128/AEM.00035-12 URL |
[35] | 史顺增, 熊德成, 冯建新, 等. 模拟氮沉降对杉木幼苗细根的生理生态影响[J]. 生态学报, 2017, 37(1): 74-83. |
Shi SZ, Xiong DC, Feng JX, et al. Ecophysiological effects of simulated nitrogen deposition on fine roots of Chinese fir(Cunninghamia lanceolata)seedlings[J]. Acta Ecol Sin, 2017, 37(1): 74-83. | |
[36] | 袁野梅, 柳隽瑶, 高秀丽, 等. 温带草原7种针茅植物根系特征及其对环境因子变化的适应[J]. 生态学报, 2022, 42(21): 8784-8794. |
Yuan YM, Liu JY, Gao XL, et al. Root traits of seven Stipa species and their relations with environmental factors in temperate grasslands[J]. Acta Ecol Sin, 2022, 42(21): 8784-8794. | |
[37] |
刘斌, 魏慧, 寇燕燕, 等. 灌溉制度对甜瓜/向日葵间作系统叶片水分状况和水分利用效率的影响[J]. 中国农学通报, 2022, 38(2): 19-25.
doi: 10.11924/j.issn.1000-6850.casb2021-0413 |
Liu B, Wei H, Kou YY, et al. Effects of irrigation system on leaf water status and water use efficiency of melon/sunflower intercropping system[J]. Chin Agric Sci Bull, 2022, 38(2): 19-25.
doi: 10.11924/j.issn.1000-6850.casb2021-0413 |
|
[38] | 马敏芝, 南志标. 内生真菌对感染锈病黑麦草生长和生理的影响[J]. 草业学报, 2011, 20(6): 150-156. |
Ma MZ, Nan ZB. Effect of fungal endophytes against rust disease of perennial ryegrass(Lolium perenne)on growth and physiological indices[J]. Acta Prataculturae Sin, 2011, 20(6): 150-156. | |
[39] |
武明雅, 陈俊强, 马海林, 等. 印度梨形孢定殖策略和促生机制研究进展[J]. 中国农学通报, 2023, 39(3): 119-126.
doi: 10.11924/j.issn.1000-6850.casb2022-0243 |
Wu MY, Chen JQ, Ma HL, et al. Colonization strategy and growth promotion mechanism of Serendipita indica: research progress[J]. Chin Agric Sci Bull, 2023, 39(3): 119-126. | |
[40] | 安常蓉, 李芸, 刘昌闳, 等. 接种内生真菌对蓝莓幼苗生长生理效应的影响[J]. 中国果树, 2022(7): 16-22. |
An CR, Li Y, Liu CH, et al. Effects of inoculating endophytic fungi on the growth and physiological indexes of blueberry seedlings[J]. China Fruits, 2022(7): 16-22. |
[1] | 高志伟, 魏明, 于祖隆, 伍国强, 魏俊龙. 耐盐植物促生菌W-1鉴定及其对红豆草耐盐性的影响[J]. 生物技术通报, 2024, 40(4): 217-227. |
[2] | 李雪, 李容欧, 孔美懿, 黄磊. 解淀粉芽孢杆菌SQ-2对水稻的促生作用[J]. 生物技术通报, 2024, 40(2): 109-119. |
[3] | 王楠, 廖永琴, 施竹凤, 申云鑫, 杨童雨, 冯路遥, 矣小鹏, 唐加菜, 陈齐斌, 杨佩文. 三株无量山森林土壤芽孢杆菌鉴定及其生物活性挖掘[J]. 生物技术通报, 2024, 40(2): 277-288. |
[4] | 常泸尹, 王中华, 李凤敏, 高梓源, 张辉红, 王祎, 李芳, 韩燕来, 姜瑛. 玉米根际多功能促生菌的筛选及其对冬小麦-夏玉米轮作体系产量提升效果[J]. 生物技术通报, 2024, 40(1): 231-242. |
[5] | 赵光绪, 杨合同, 邵晓波, 崔志豪, 刘红光, 张杰. 一株高效溶磷产红青霉培养条件优化及其溶磷特性[J]. 生物技术通报, 2023, 39(9): 71-83. |
[6] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[7] | 褚睿, 李昭轩, 张学青, 杨东亚, 曹行行, 张雪艳. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271. |
[8] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
[9] | 徐红云, 吕俊, 于存. 根际溶磷伯克霍尔德菌Paraburkholderia spp.对马尾松苗的促生作用[J]. 生物技术通报, 2023, 39(6): 274-285. |
[10] | 车永梅, 郭艳苹, 刘广超, 叶青, 李雅华, 赵方贵, 刘新. 菌株C8和B4的分离鉴定及其耐盐促生效果和机制[J]. 生物技术通报, 2023, 39(5): 276-285. |
[11] | 罗义, 张丽娟, 黄伟, 王宁, 吾尔丽卡·买提哈斯木, 施宠, 王玮. 一株耐铀菌株的鉴定及其促生特性研究[J]. 生物技术通报, 2023, 39(5): 286-296. |
[12] | 李善家, 雷雨昕, 孙梦格, 刘海锋, 王兴敏. 种子内生细菌多样性与植物互馈作用研究进展[J]. 生物技术通报, 2023, 39(4): 166-175. |
[13] | 李琦, 杨晓蕾, 李晓林, 申友磊, 李建宏, 姚拓. 高寒草地燕麦根际解植酸磷促生菌鉴定及其优势菌假单胞菌属菌株功能特性[J]. 生物技术通报, 2023, 39(3): 243-253. |
[14] | 易希, 廖红东, 郑井元. 植物内生真菌防治根结线虫研究进展[J]. 生物技术通报, 2023, 39(3): 43-51. |
[15] | 杨东亚, 祁瑞雪, 李昭轩, 林薇, 马慧, 张雪艳. 黄瓜茄病镰刀菌拮抗芽孢杆菌的筛选、鉴定及促生效果[J]. 生物技术通报, 2023, 39(2): 211-220. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||