[1] |
胡荣蓉, 丁世杰, 郭赟, 等. Trolox对猪肌肉干细胞增殖及分化的影响[J]. 中国农业科学, 2021, 54(24): 5290-5301.
|
|
Hu RR, Ding SJ, Guo Y, et al. Effects of trolox on proliferation and differentiation of pig muscle stem cells[J]. Sci Agric Sin, 2021, 54(24): 5290-5301.
|
[2] |
Dong WX, Chen WH, Zou HB, et al. Ginsenoside Rb1 prevents oxidative stress-induced apoptosis and mitochondrial dysfunction in muscle stem cells via NF- κ B pathway[J]. Oxid Med Cell Longev, 2022, 2022: 9159101.
|
[3] |
Kumar S, Kumar R, Diksha, et al. Astaxanthin: a super antioxidant from microalgae and its therapeutic potential[J]. J Basic Microbiol, 2022, 62(9): 1064-1082.
|
[4] |
Queen CJJ, Sparks SA, Marchant DC, et al. The effects of astaxanthin on cognitive function and neurodegeneration in humans: a critical review[J]. Nutrients, 2024, 16(6): 826.
|
[5] |
Chen Y, Ling CJ, Chen MT, et al. Astaxanthin ameliorates worsened muscle dysfunction of MDX mice fed with a high-fat diet through reducing lipotoxicity and regulating gut microbiota[J]. Nutrients, 2023, 16(1): 33.
|
[6] |
Kjøbsted R, Hingst JR, Fentz J, et al. AMPK in skeletal muscle function and metabolism[J]. FASEB J, 2018, 32(4): 1741-1777.
|
[7] |
Xu JH, Velleman SG. Critical role of the mTOR pathway in poultry skeletal muscle physiology and meat quality: an opinion paper[J]. Front Physiol, 2023, 14: 1228318.
|
[8] |
Ozaki Y, Ohashi K, Otaka N, et al. Myonectin protects against skeletal muscle dysfunction in male mice through activation of AMPK/PGC1α pathway[J]. Nat Commun, 2023, 14(1): 4675.
|
[9] |
周琳, 梁轩铭, 赵磊. 天然类胡萝卜素的生物合成研究进展[J]. 生物技术通报, 2022, 38(7): 119-127.
|
|
Zhou L, Liang XM, Zhao L. Biosynthesis of natural carotenoids: progress and perspective[J]. Biotechnol Bull, 2022, 38(7): 119-127.
|
[10] |
Inoue H, Shimamoto S, Takahashi H, et al. Effects of astaxanthin-rich dried cell powder from Paracoccus carotinifaciens on carotenoid composition and lipid peroxidation in skeletal muscle of broiler chickens under thermo-neutral or realistic high temperature conditions[J]. Anim Sci J, 2019, 90(2): 229-236.
|
[11] |
Cao YR, Yang L, Qiao X, et al. Dietary astaxanthin: an excellent carotenoid with multiple health benefits[J]. Crit Rev Food Sci Nutr, 2023, 63(18): 3019-3045.
|
[12] |
Nishida Y, Berg PC, Shakersain B, et al. Astaxanthin: past, present, and future[J]. Mar Drugs, 2023, 21(10): 514.
|
[13] |
Medoro A, Davinelli S, Milella L, et al. Dietary astaxanthin: a promising antioxidant and anti-inflammatory agent for brain aging and adult neurogenesis[J]. Mar Drugs, 2023, 21(12): 643.
|
[14] |
Fang JH, Li M, Zhang GQ, et al. Vitamin C enhances the ex vivo proliferation of porcine muscle stem cells for cultured meat production[J]. Food Funct, 2022, 13(9): 5089-5101.
|
[15] |
Motohashi N, Asakura A. Muscle satellite cell heterogeneity and self-renewal[J]. Front Cell Dev Biol, 2014, 2: 1.
|
[16] |
Mouradian S, Cicciarello D, Lacoste N, et al. LSD1 controls a nuclear checkpoint in Wnt/β-Catenin signaling to regulate muscle stem cell self-renewal[J]. Nucleic Acids Res, 2024, 52(7): 3667-3681.
|
[17] |
Lian D, Chen MM, Wu HY, et al. The role of oxidative stress in skeletal muscle myogenesis and muscle disease[J]. Antioxidants, 2022, 11(4): 755.
|
[18] |
Liu Z, Lin L, Zhu HZ, et al. YAP promotes cell proliferation and stemness maintenance of porcine muscle stem cells under high-density condition[J]. Cells, 2021, 10(11): 3069.
|
[19] |
Yoshihara T, Sugiura T, Miyaji N, et al. Effect of a combination of astaxanthin supplementation, heat stress, and intermittent reloading on satellite cells during disuse muscle atrophy[J]. J Zhejiang Univ Sci B, 2018, 19(11): 844-852.
|
[20] |
Dose J, Matsugo S, Yokokawa H, et al. Free radical scavenging and cellular antioxidant properties of astaxanthin[J]. Int J Mol Sci, 2016, 17(1): 103.
|
[21] |
Yu TZ, Dohl J, Chen YF, et al. Astaxanthin but not quercetin preserves mitochondrial integrity and function, ameliorates oxidative stress, and reduces heat-induced skeletal muscle injury[J]. J Cell Physiol, 2019, 234(8): 13292-13302.
|
[22] |
Zhou YS, Baker JS, Chen XP, et al. High-dose astaxanthin supplementation suppresses antioxidant enzyme activity during moderate-intensity swimming training in mice[J]. Nutrients, 2019, 11(6): 1244.
|
[23] |
Kawamura A, Aoi W, Abe R, et al. Combined intake of astaxanthin, β-carotene, and resveratrol elevates protein synthesis during muscle hypertrophy in mice[J]. Nutrition, 2020, 69: 110561.
|
[24] |
Yoshihara T, Yamamoto Y, Shibaguchi T, et al. Dietary astaxanthin supplementation attenuates disuse-induced muscle atrophy and myonuclear apoptosis in the rat soleus muscle[J]. J Physiol Sci, 2017, 67(1): 181-190.
|
[25] |
Jaime D, Fish LA, Madigan LA, et al. The MuSK-BMP pathway maintains myofiber size in slow muscle through regulation of Akt- mTOR signaling[J]. Res Sq, 2023: rs.3.rs-rs.2613527.
|
[26] |
Tang G, Du Y, Guan HC, et al. Butyrate ameliorates skeletal muscle atrophy in diabetic nephropathy by enhancing gut barrier function and FFA2-mediated PI3K/Akt/mTOR signals[J]. Br J Pharmacol, 2022, 179(1): 159-178.
|
[27] |
Morissette MR, Cook SA, Buranasombati C, et al. Myostatin inhibits IGF-I-induced myotube hypertrophy through Akt[J]. Am J Physiol Cell Physiol, 2009, 297(5): C1124-C1132.
|
[28] |
Di CN, Jia W. Food-derived bioactive peptides as momentous food components: can functional peptides passed through the PI3K/Akt/mTOR pathway and NF-κB pathway to repair and protect the skeletal muscle injury?[J]. Crit Rev Food Sci Nutr, 2023: 1-18.
|
[29] |
Kwak HJ, Kim J, Kim SY, et al. Moracin E and M isolated from Morus alba Linné induced the skeletal muscle cell proliferation via PI3K-Akt-mTOR signaling pathway[J]. Sci Rep, 2023, 13(1): 20570.
|
[30] |
Chun Y, Kim J. AMPK-mTOR signaling and cellular adaptations in hypoxia[J]. Int J Mol Sci, 2021, 22(18): 9765.
|
[31] |
Yan LS, Zhang SF, Luo G, et al. Schisandrin B mitigates hepatic steatosis and promotes fatty acid oxidation by inducing autophagy through AMPK/mTOR signaling pathway[J]. Metabolism, 2022, 131: 155200.
|